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Abstract 
This topic discusses an improved methodology for solving the deformation behavior of a Belleville spring 

under axial loading by the minimum potential energy principle. The elastic strain energy and work done of the 
Belleville spring are formulated based on the classical thin shell theory in a conical coordinate system. The von 
Karman and Reissner approximations to the nonlinear strain-displacement relations take the geometrical effects of the 
moderately and very large axial deflection into consideration, respectively. The Ritz method is used to solve for the 
deformation and force characteristics of isotropic springs and the solutions are compared with the previous Almen 
and Laszlo’s equation, experiments and the finite element analysis. The present energy model can capture the effect 
of a geometric parameter that has been missing from the Almen and Laszlo scheme. The comparison exhibits that the 
developed method gives very good agreement with the results from the testing and finite-element method, whereas 
Almen and Laszlo’s equation overpredicts the applied load at a given deflection in most cases owing to their limited 
assumptions. 
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1. Introduction 

 A Belleville spring or coned-disc spring as shown 
in Fig.1 is a type of spring shaped like a washer. It can 
be loaded along its axis and deformed elastically similar 
to other type of springs. Particularly, a Belleville spring 
is suitable for axial loading with either linear or 
nonlinear spring characteristic. It is also applicable in 
applications that need the buckling of spring as 
illustrated in Fig. 2. The overall relationship between 
compressive axial load P and the corresponding 
deflection  in the figure is shown as a function of the 
ratio of height to thickness (h/t). According to Almen 
and Laszlo [1], the relationship between the load and 
deflection is illustrated to be linear, if the ratio of h/t is 
quite less than the square root of two. If the ratio of h/t 
is equal to or higher than the square root of two, the 
relationship is not linear and can reveal negative spring 
stiffness or negative spring rate. When the load 
increases and reaches the upper critical point right 
before the negative rate region, the spring is suddenly 
snapped into the inverted shape on the ensuing positive 
rate region where suddenly large axial deflection is 
observed. On the contrary, when the applied load 
descends from the snapped configuration to the lower 
critical point, the spring is snapped back close to the 
original undeformed shape. The abrupt shape-change 
phenomenon is called “oil canning” or “snap-through 
buckling” and happens because the spring is statically 
unstable in the negative rate region. 
 A Belleville spring is basically a truncated conical 
shell. Previous research of stability of this type of 
structure was originally conducted by Pflüger [2]. Later, 

many researchers have investigated instability and 
buckling of isotropic conical shells caused by a variety 
of applied loads. Seide [3, 4] examined the buckling 
effect of conical shells on axial load. Together with 
Weigarden and Morgan [5, 6], they studied the stability 
of conical shell under axial compression and other 
external forces. Singer [7] proposed the solution for the 
buckling of conical shells under external force. With 
Baruch [8] they considered the buckling of stiffened 
conical shells under the static hydraulic pressure. 
Moreover, Singer, Baruch and Harari [9, 10] also 
analyzed the buckling of the conical shell and found 
buckling phenomena caused by the axially compression 
with different conditions.  
 All of the investigations mentioned above 
considered thin shell with high cone angle over 45 
degree. ( in Fig. 1) but did not study the behavior of 
shells that has low and moderate cone angle as 
presented in the Belleville spring shapes. Some 
researchers, therefore, created a mathematical model 
for analyzing the Belleville spring using the specific 
kinematics assumptions to predict the behavior of the 
Belleville spring. For example, Almen and Laszlo [1] 
presented a mathematical formulation that shows 
relationship among axial load, deflection, and stresses 
developed in a Belleville spring made of isotropic 
material. Their assumptions and equations were based 
on the method of Timoshenko [11], which assumes that 
the cross-sectional area is undestroyed; deflection is 
caused only by the rotation of cross sectional area 
around the neutral point, and the radial stress is equal to 
zero. Curti and Orlando [12, 13] modified the 
assumptions   of   Almen  and  Laszlo   and  set  the   radial 
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Fig. 1 Belleville spring geometry and coordinate 
system used 

 

 
Fig. 2 Load-deflection characteristics 

 
to zero instead of stress. Zheng et al. [14] also 
formulated a cone disk spring design equation for 
isotropic springs. They developed an analytical model 
by treating a spring as a circular plane plate with initial 
bending curvature. The energy method was proposed 
for calculating the relationship of load and deflection. 
Ozaki and Tsuda [15] investigated the effects of friction 
boundary condition on the static and dynamic 
deformation behaviors of stacked Belleville springs by 
using FEM. In addition, with the improvement of 
testing and numerical method in recent years, new 
techniques for preventing material failure of steel 
Belleville spring parts were proposed [16-17].  
 To relax the assumptions stated above, this article 
presents the new formulation for analysis of the 
Belleville spring made from isotropic materials. The 
study is directly related to the relevant parameters such 

as size, shape and material of spring based on the theory 
of thin structures, which is concerned large deflection 
and the buckling instability caused by geometric 
nonlinearities. The structure of the article is arranged as 
follows; energy method based on the Ritz approach is 
elaborated in the next section. Parametric study of 
Belleville spring’s characteristics is conducted in 
Section 3. Comparison of load-displacement 
relationships of various spring geometries calculated 
from Almen and Laszlo’s equation, experiments, the 
present energy method, and the finite-element method 
are investigated. The final conclusion is given in 
Section 4. 
 

2. Modeling of Belleville Spring 

 Due to the limitation from Almen and Laszlo’s 
assumptions, this section aims to create the generic 
formulation developed by using the energy principle. 

2.1 Strain-displacement and stress-strain relations 
 Starting from the expressions of strain and 
displacement of a conical shell generated under the 
Kirchhoff-Love hypothesis and Donnell shallow shell 
approximation, the assumptions are as followed: (1) the 
spring is adequately thin, and (2) strains are sufficiently 
small. This two conditions are typically valid for 
general Belleville springs in application. All of the 
assumptions in the Almen and Laszlo model outlined in 
Introduction are released in this work. 
 Accordingly, the strains are given by 
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mid-plane strains and curvatures, respectively. The 
relationship between strains and mid-plane 
displacements can be expressed as: 
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 when uo, vo and wo are the mid-plane displacements 
in conical coordinate system (s--z coordinate) as 
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illustrated in Fig. 1. The conical coordinate system used 
in this work simply relates to the cylindrical coordinate 
by the coordinate rotation between s-z axes and r-x axes 
with the cone angle (=90o-)as shown in the figure 
so the strains and displacements in the conical 
coordinate can be derived by tensor transformation 
from the cylindrical coordinate. It must be noted that the 
underlined terms in Equation (2) explicitly represent the 
von Karman approximation to full nonlinear strain-
displacement relations in order to capture moderately 
large axial deflection of the spring. On the contrary, 
Almen and Laszlo implicitly took the nonlinear strain-
displacement relations into account when kinematics of 
a conical disk spring was formulated. With the 
assumption of small deflection angle from angle , they 
expressed strain as a second order polynomial of the 
axial deflection. 
 The constitutive stress-strain relations for a given 
layer is 
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 where s ,   and s  are normal stresses in the s- 

and - directions and in-plane shear stress in the s- 
plane, respectively. E is extensional modulus, v 
Poisson's ratio and G the shear modulus. 
 

2.2 Classical lamination theory 
 The relationship between force and moment 
resultants and the mid-plane strains-curvatures is 
calculated from ABD matrix and can be described as: 
[18] 
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Force and moment resultants in Equation (4) are 
associated with the relevant stress component from the 
following equations 
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where s ,  and s  are normal stresses in the s- and 

- directions and in-plane shear stress in the s- plane. 
Aij, Bij and Dij in ABD matrix can be calculated from 
Equation (6) 
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2.3 The Ritz method 
 Under the axial loading mid-plane displacements 
of the Belleville spring in the radial direction u, 
circumferential direction v, and transverse direction w 
in the conical coordinate system illustrated in Fig.1 are 
assumed to be 
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 Because the axisymmetric deformation of the 
Belleville spring is considered, circumferential 
displacement v must be zero, whereas the displacements 
in the other two directions are expressed as polynomial 
functions only in the s-direction. ai, bj and ck are 
unknown coefficients, which are determined by 
utilizing the minimum total potential energy principle 
in conjunction with the Ritz method. I and K indicate 
the maximum order of polynomials for the 
displacements in s- and z-directions, respectively. 
 The total potential energy of the Belleville spring 
 in Equation (8) can be formulated as the combination 
of the strain energy U expressed in Equation (9), the 
external work done W exerted by axial force P in 
Equation (10) and the constraint term g in Equation (11) 

 U W g      (8) 
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In the above, s1 and s2 in Equations (9) and (11) are the 
inner and outer radial distances from the vertex of the 
cone shown in Fig.1, while sp in Equation (10) denotes 
the radial distance where the load P is exerted. If 
application of P is distributed on the top of the spring, 
sp is equal to s1. The constraint in Equation (11) is 
required to ensure that the bottom edge of spring             
(s = s2) is immovable in the vertical direction (g = 0) but 
it can slide in the horizontal direction.  is Lagrange 
multiplier associated with the constraint function g. It is 
important to note that the formulation developed herein 
is based on material or Lagrangian description in which 
displacements, strains and stresses are functions of the 
reference or undeformed coordinate (s--z) located on 
the undeformed spring mid-surface. Therefore, the 
coordinate angle  relative to the vertical (as well as 
original cone angle ) is invariant during the spring 
deformation because it is referred to the original spring 
shape. 
 To warrant equilibrium of the spring’s deformation 
under the exerted load P, the first variation of Equation 
(8) must be equal to zero. As a result, the unknown ai 
and ck can be obtained from the following nonlinear 
system of equations 
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 The unknown coefficients are obtained after 
solving the system of equations (12) under a given axial 
load. They are back-substituted into the displacement 
functions in Equation (7) to calculate for the 
displacement in any directions. These calculations are 
performed by using the computational software 
program MathematicaTM. Strain and stress in each 
direction can also be evaluated by utilizing Equations 
(2) and (3). 
 
 
Table 1 Material Properties 

Material E (GPa) G (GPa)  

Steel 206.9 79.6 0.30 

3. Results and Discussions 

3.1 Load - deflection analysis 
 For the sake of convenience and brevity, all 
variables shown in this section are converted into 
dimensionless quantities. This methodology can reduce 
the number of independent variables used in the 
analysis of the obtained results. The variables that affect 
the load (P) at any deflection of a spring are related to 
the material properties such as Young Modulus (E), 
Poisson's ratio (v), and the geometries of the spring 
including the height (h), thickness (t), inner diameter 
(Di) and outer diameter (Do) as shown in Figure 2. The 
Buckingham-Pi theorem is used to normalize these 
variables. It is found that normalized load Pnor depends 
on three groups of dimensionless variables as shown in 
Equation (13). 
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 In addition, normalized deflection nor can be 
defined in Equations (14) as the ratio of the topmost 
deflection to thickness of the spring  

 nor t

    (14) 

and normalized stress, expressed as the ratio of the 
circumferential stress to the load per the outer diameter 
multiplying by thickness, is expressed in Equation (15) 
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 The springs considered for the analysis in 
subsection 3.2 to 3.3 is made of isotropic steel, of which 
material properties are tabulated in Table 1. Fig. 3 
shows the relationship between normalized load and 
normalized deflection of a spring with zero cone angle 
() or a flat spring with h/t = 0. The figure presents the 
resultsfrom the present energy method, the Almen and 
Laszlo equation, and the Almen and Laszlo testing. 
Legend U5W2 indicates that displacement functions U  
and W  of equation (9) utilized in the energy method are 
quintic (I = 5) and quadratic (K = 2) polynomials, 
respectively. The numbers of terms in the polynomials 
are specified by monitoring convergence of the 
calculated displacements and strains. NLW denotes the 
inclusion of geometrically non-linear terms of w, which 
is underlined in Equation (2). As seen, the result from 
U5W2-NLW shows non-constant increasing positive 
spring rate when the applied load is higher. This 
computation agrees very well with the testing result and 
exhibits a better prediction than that obtained from the 
Almen and Laszlo equation, which clearly is an 
overestimate. Calculation from the energy model 
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without geometric nonlinearities contribution denoted 
as merely U5W2 is also plotted in the figure for 
comparison and it undoubtedly reveals a linear load-
displacement relation, which unsatisfactorily 
underestimates the spring rate at higher deflections. 
 Fig. 4 displays the results from the spring with h/t 
= 0.65, which is less than the square root of two. Thus, 
it is expected that the deformation behavior of spring 
has only positive spring rate. Analysis with U5W2-
NLW again shows a good agreement with the 
experiment. Results from both the energy method and 
testing are slightly lower than that obtained from the 
Almen and Laszlo equation, similar to that illustrated in 
the previous figure. In addition, the recent formulation 
developed by Zheng, et al. [14] is also computed and 
included in Fig. 4. It presents very close prediction to 
the Almen and Laszlo’s formulation. The energy model 
U5W2 again provides a linear relation with a uniform 
spring rate, which is mostly overestimated in the range 
of normalized deflection considered. Henceforth 
analyses with the present energy model will always take 
nonlinear kinematics of strain-displacement into 
account to be able to accurately capture stiffening or 
softening effect of Belleville springs. 
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Fig. 3 Load-deflection curve of a flat Belleville spring 

(Di/Do = 0.38, h/Do = 0, h/t = 0, t/L = 0.064,  = 0o) 
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Fig. 4 Load-deflection curve of a Belleville spring 

having a positive rate only 

(Di/Do = 0.60, h/Do = 0.0216, h/t = 0.65, t/L = 0.1648, 
 = 6.16o) 
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Fig. 5 Load-deflection curve of a Belleville spring 

having a negative rate 
(Di/Do = 0.51, h/Do = 0.0208, h/t =1.49, t/L = 0.0569, 

= 4.86o) 

 The spring with h/t more than the square root of two 
is shown in Fig. 5. The result of relationship between 
load and deflection from the present energy method 
shows two points of zero spring rate, i.e. the upper 
critical point at nor approximately equal to 1.2 and 
lower critical point at nor about 1.7. The normalized 
deflection between the upper and lower critical points 
reveals negative spring rate, which theoretically 
indicates unstable deformation. Therefore, when the 
load increases to the upper critical point, the spring 
snaps into the new position at nor equal to 2.0. On the 
contrary, when decreasing force reaches lower critical 
point, the spring snaps back to the normalized 
deflection of around 1.0. The result from the Almen and 
Laszlo equation again predicts higher normalized load 
than those from the energy method and testing results. 
The model of Zheng, et al. gives the same spring rate as 
the energy method and testing at small deflections but 
noticeably overestimates the normalized load when the 
normalized deflection is larger. Analysis with finite 
element method (FEM) is also conducted by using 
commercial software ABAQUS™. Two dimensional 
axisymmetric elements are chosen for calculation. 
Simulation output obtained from ABAQUS™ is close 
to that of the energy method and testing data and 
absolutely confirms the validity of the present energy 
model. Thus, the present energy model will be 
confidently used with ease in parametric studies and 
performance analyses of Belleville springs in different 
cases and conditions, since it consumes less 
preprocessing and computation times than FEM. 
 Fig. 6 shows examples of the analysis of a spring 
when load acts away from the edge of inner diameter. 
Df denotes diameter of the circular lined load. The 
spring considered has Df/Do ratio of 0.45. Therefore, 
when the lined load is located at the inner edge of the 
spring, Df/Do ratio equals 0.45. From the figure, the 
spring with load applying further away from the inner 
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diameter (larger Df/Do) requires higher resultant force 
for the same deflection. The results of the present 
energy model are in much better agreement with the 
Almen and Laszlo experiment than the result predicted 
by the Almen and Laszlo equation. Simulation from 
FEM once again matches nicely with the energy model. 
 Fig. 7 illustrates the mid-plane deformation of the 
spring along the radial distance at three different 
topmost deflections ( = 1, 3, and 6 mm) based on three 
different methods, namely the present energy model, 
the Almen and Laszlo model, and FEM. The spring 
considered in the figure has the upper and lower critical 
points at the deflections equal to 1.6 and 5 mm, 
respectively. The spring’s deflection of 1 mm shows the 
identical deformed shape of the mid-plane along the 
generator line in all three approaches. The spring’s mid-
plane remains straight line and obeys the Almen and 
Laszlo’s assumption of undestroyed rotational cross-
section during this loading. However, as the spring has 
the deflection of 3 mm, which is beyond the upper 
critical point, spring exhibits the radially curved 
deformation according to the present energy method 
and FEM. This curved cross-section refutes the Almen 
and Laszlo assumption to a certain extent. At the 
deflection higher than the lower critical point at 6 mm, 
the mid-plane deformation shows further noticeable 
curvature in the radial direction, and therefore the 
assumption of the Almen and Laszlo equation is further 
invalid in this case. 
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Fig. 6 Load-deflection curve of a Belleville spring 
loaded at various locations 

(Di/Do = 0.45, h/ Do = 0.0238, h/t = 1.72, t/L = 0.0508, 
 = 5.02o) 
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Fig. 7 Deflection of Belleville spring along the radial 

distance 
(Di/Do =0.35, h/ Do = 0.05, h/t = 3.3, t/L = 0.0461,  

= 8.75o) 

3.2 Stress and strain analysis 
 For analysis and design of a disk spring, 
circumferential stress is normally considered because of 
its higher magnitude than stress in the other directions. 
In this article the circumferential stress is presented in 
the form of the normalized variable expressed in 
Equation (15). Fig. 8 and 9 illustrate the stresses for the 
spring having the same geometric parameters as those 
used in Fig. 5. 
 Fig. 8 shows the relations between the normalized 
load and normalized circumferential stress calculated 
from the energy method at three transverse locations on 
the inner edge: top, middle and bottom. The increase of 
the applied load causes the higher circumferential stress. 
A compressive stress occurs at the top, while a tensile 
stress appears at the bottom, as expected in a typical 
bending structure subjected to a transverse load. It can 
be noted that because nonlinear effects, the induced 
stress is not linearly proportional to the applied force. 
Fig. 9 shows the circumferential stress along the 
generator in the s-direction when the spring is loaded 
such that the deflection is equal to the height of spring. 
At the inner edge (s = s1) the magnitude of compressive 
stress is highest at the top surface where the force is 
applied. On the other hand, at the outer edge (s = s2) the 
maximum tensile stress locates at the bottom surface, 
where the spring is constrained or supported. 

Table 2 Example of maximum stress and strain in circumferential and radial directions  

Di/Do h/t h/Do s (MPa) 


(MPa) 
s 

(m/m) 


(m/m) 
% s/  %  

0.35 

1.5 
0.01 -2.08 -17.96 15 - 83 11.58 17.69 

0.05 -53.43 -452.83 365 -2101 11.80 17.38 

3.3 
0.01 -1.40 -8.38 8 -39 16.71 19.18 

0.05 -35.65 -209.98 184 -979 16.98 18.84 
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Fig. 8 Stress-load relationship at inner diameter of 

Belleville spring 
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Fig. 9 Stress distribution along the radial direction of 

Belleville spring 
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Fig. 10 Comparison of the load vs. deflection curve 

among U5W2-NLW, U5W2-NLUW and FEM 
(Di/Do = 0.35, h/Do = 0.2, h/t=5.3, t/L=0.0989, 

 =31.61o) 
 
 The comparison with the results obtained from 
FEM in the Fig. 8 and 9 shows very good agreements. 
This confirms accuracy and reliability of the developed 

energy method to perform stress analysis in the spring 
with much fewer degrees of freedom and less 
computational cost than those of a FEM analysis. More 
details for stress and strain analysis of the Belleville 
spring are given in Table 2. The springs with Di/Do 
equal to 0.35, h/t equal to 1.5 and 3.3, and h/Do equal to 
0.01 and 0.05 are considered. The stress and strain in 
the circumferential and radial directions are computed 
from the energy method when the applied load is about 
20% of the upper critical load. The maximum 
circumferential stress is compressive stress on the top 
surface at the inner diameter whereas the maximum 
radial stress is also compressive on the top surface, but 
at approximately the middle of the generator line due to 
the maximum radial curvature occurring at that point.  
 The strain in both directions, nonetheless, is always 
maximum at the inner diameter. Note that the Almen 
and Laszlo’s assumption of zero radial stress is clearly 
invalid because the ratio of maximum radial stress to 
maximum radial circumferential stress is more than 
10%, which is truly not negligible. The similar 
conclusion can also be made from strain analysis. The 
ratio of maximum radial strain to maximum 
circumferential strain is almost 20% and the radial 
strain is also not that trivial when compared to the 
circumferential strain. This result then refutes the zero 
radial strain hypothesis that is proposed by Curti and 
Orlando [12, 13]. 

3.3 Very large deflections 
 The preceding figures show the necessity of 
including the geometrically nonlinear terms of w from 
von Karman approximation in order to capture the 
nonlinear behavior of the Belleville spring. Without 
such terms, the relation between load and deflection is 
linear and the spring rate is always predicted to be 
constant. The energy equation that excludes the 
nonlinear terms can predict the characteristic of the 
spring only with very low deflection (nor less than 0.25). 
However, a significant increment of deflection can 
induce stronger effect of geometrical nonlinearities. In 
such cases of very large deflections, Reissner’s 
approximation expressed as the double underlined 
nonlinear term of u in the radial strains in Equation (16) 
becomes essential for accurate prediction by the energy 
method. 

 
2 2

1 1

2 2
o
s

u w u

s s s
                

  (16) 

 Fig. 10 distinguishes spring deformations under the 
applied load including and not including Reissner’s 
approximation. The spring characteristic computed 
from the energy method with the double underlined 
strain component is denoted by U5W2-NLUW legend, 
whereas that with merely the underlined strain 
component is designated by U5W2-NLW legend as 
consistently used in this article. The calculation from 
the energy method is compared with the FEM and the 
result obtained from U5W2-NLUW model is very close 
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to the finite element simulation. This indicates that the 
exclusion of the nonlinear term of u can overpredict the 
deformation when the spring deflection becomes very 
large. It should be noted that even though U5W2-
NLUW model provides good predictions in a wider 
range of spring geometries and deformations, the model 
is quite computationally expensive because of strong 
nonlinearities. Thus, Reissner’s approximation should 
be used only when the spring has h/t greater than three 
and is loaded so that nor is greater than 0.25. 
 

4. Conclusion 

 An application of the Ritz method based on the 
energy approach has been discussed to predict the 
deformation and load characteristics of a Belleville 
spring made of isotropic materials. Because of 
nonlinear spring rate involved, geometric nonlinearities 
are included in the theory and, as such, multiple spring 
deflections can be predicted at the same load when the 
spring’s geometric ratios h/t and h/Do are higher than 
their critical values. The snap-through action can be 
observed by the present energy method, as can also be 
seen by the seminal Almen and Laszlo formulation, but 
the former is shown to be more accurate and versatile 
than the latter when compared to the experiments and 
finite-element analysis in various cases. 
 In summary, it appears that the energy method 
presented herein has the enormous potential and can be 
further applied to predict and design a variety of novel 
disk springs, for example springs with non-constant 
thickness in order to achieve the optimal spring 
configurations for minimum developed stress or lowest 
weight with the same spring rate. This type of spring in 
practice has more complicated shape so it is more 
involved in analysis and design with the conventional 
models. Springs composed of a smart material such as 
shape memory alloy and piezoelectric materials are 
another example that is suited for the energy method 
due to the materials’ sophisticated constitutive models. 
There are a number of promising features of smart 
Belleville springs that have not been investigated or 
studied before and they can be explored for their 
increasing potentials in the future. 
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