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Abstract 
 In this paper, kinematic analysis of a 3- SRRP  parallel robot is presented. The robot consists of a triangular 

moving platform connected to a rigid base through three SRRP  link chains. All three link chains are assumed 
identical. Each link chain composes of two rigid bodies connected in series by two actuating revolute joints. These 
link chains are connected to the base by prismatic joints and to the moving platform by spherical joints. The 3-

SRRP  parallel robot has six degrees of freedom (DOF). It can translate the end-effector in three dimensional spaces 
and can provide rotational motion about three independent axes. The explicit inverse kinematic solutions are 
provided. The details of the steps to numerically obtain the forward kinematic solutions by dialytic elimination 
method are presented. 
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1. Introduction 

 In some tasks, robots are used instead of human 
workers because they can operate repetitively for a 
lengthy period of time, and in many cases, with higher 
accuracy. There are two types of robot structure: serial 
and parallel. Serial robot is an open chain of links 
connected in series having only one link connected to 
ground. Parallel robots, on the other hand, have more 
than one links that are connected to ground. Serial 
robots can cover a large working space with high 
degree of dexterity in the expense of large and heavy 
link components. Due to their structure parallel robots, 
comparatively, have higher stiffness and higher 
accuracy. The link components can be designed 
smaller than those of the serial type. The drawbacks 
are the smaller workspace and the complexity of 
kinematics.  

The inverse kinematic of a parallel robot is 
generally straightforward to analyze.  However, the 
forward kinematic can be quite complicated.  The 
approaches to obtain solutions to the forward 
kinematic of a parallel robot may be divided into 3 
categories: closed-form solution, numerical technique 
and analytical technique. For some special structure, 
the closed-form solutions exist. For example, the 
Gough platform [2,3,4] of which link components are 
specially symmetrically arranged such that solutions 
resolve into closed-form. For most other parallel 
robots, the closed-form solutions do not exist. A set of 
nonlinear equations have to be solved numerically. 
The methods such as Newton-Raphson[8], Global 
Newton Raphson [5] have been shown to obtain 
solutions. In analytical approach the form of equations 
is rearranged into other well-known form such as 
polynomial equations. The solutions can then be 
obtained from standard technique such as dialytic 
elimination method [9]. 

Generally, the working space of 6-DOF parallel 
robots is limited due to many constraints introduced by 
the nested structure of link connection. In this paper, a 

6-DOF 3 legs prismatic-revolute-revolute-spherical (3-
SRRP ) chain parallel robot is analyzed (the overbar 

indicates actuating joint). With three legs, the end-
effector is less restricted and hence complication is 
reduced which could lead to increased working space. 
Section 2 presents the description of the 3- SRRP  
robot. In Section 3, the detail of the analytic form of 
inverse kinematic solutions will be explained. The 
procedure to obtain the forward kinematic solutions 
will be presented. Conclusions are provided in Section 
4. 

2. Description of a 3- SRRP Parallel Robot 

 Fig. 1a shows the skeletal diagram of the 3-              
SRRP  parallel robot. It consists of a moving platform, 

which acts as a base holding an end-effector, 
connected to a fixed base through three link chains. 
The moving platform can be viewed schematically as a 
triangular plate. Each link chain consists of three rigid 
body connected serially by two revolute joints. These 
link chains are connected to the base by prismatic 
joints and to the moving platform at its corners by 
spherical joints. The revolute joints are actuating joints. 
The prismatic and spherical joints are passive. Let the 
X-Y-Z frame be a fixed frame and the x-y-z frame be 
attached to the moving platform. Each link chain lies 
on a plane which is mutually perpendicular to the 
planes on which the other link chains lie. Link chain 1 
lies on the Y-Z plane. Its prismatic joint is along the 
X-axis and its two revolute joint axes are also parallel 
to the X-axis. This is similar for Link chain 2 to the X-
Z plane and the Y-axis and Link chain 3 to the X-Y 
plane and the Z-axis. The end of each link chain is 
connected to the triangular moving platform by a 
spherical joint at Di. 
 The degree of freedom (mobility number) of the 
3- SRRP  parallel robot can be determined from 
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  ,345)1(6 321 fffnM  (1) 
  
where 

M = Degree of Freedom, D.O.F.  
n = number of links (including the base)  
f1 = number of joint with 1 D.O.F. 
f2 = number of joint with 2 D.O.F. 
f3 = number of joint with 3 D.O.F. 

 
Here, n=11, f1 = 9, f2 = 0 and f3 = 3, therefore the robot 
has 6 degrees of freedom. This robot can perform tasks 
that require positioning and orientating of object(s) in 
three dimensional spaces. 

3. Kinematic of a 3- SRRP  Parallel Robot 

 To analyze the kinematics of a 3- SRRP  parallel 
robot, consider the kinematics of a moving platform 
and the kinematics of each link chain.  In Fig. 1b, 
O(0,0,0) is the origin of the fixed frame and E(ex,ey,ez) 
is the origin of the x-y-z frame which is attached to the 
moving platform. Let R be the rotation matrix which 
maps the moving x-y-z frame onto the fixed X-Y-Z 
frame. For each chain i: 

  .OEEDOD i  Ri  (2) 

Note that EDi  are the known local distance vectors in 

the rotating frame. 

3.1 Inverse Kinematic  
 When the position E and orientation, i.e. the 
rotation matrix R, of the moving platform are given, 
the positions of all Dis can be uniquely determined. 
For each link chain, 

  .EDOEOD iRi    (3) 

Each link chain can be considered as a 3-DOF serial 
planar manipulator with two actuators and one passive 
joint. Once the coordinate of Di is determined, one can 
proceed to find the input joint angles of the actuators. 
Link chain 1 operates on planes parallel to the Y-Z 
plane. The coordinate of D1 is (X, Dy1, Dz1) where X is 
long the passive prismatic joint and not directly 
controlled by Link chain 1. Dy1 and Dz1 are expressed 
in terms of actuating angles θ11 and θ21 (see Fig. 2a) as 
follow:  

a) b) 

Fig. 1 a) Schematic description of a 3- SRRP  parallel robot, b) vector loop of Link chain 1 of a 3-

SRRP  parallel robot 

a) 
Fig. 2 Angles description of link chains

b) c) 
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)cos(lcosl 2111u111l11  yD   (4) 

)sin(lsinl 2111u111l11  zD   (5) 

From Eqs. (4) and (5) the inverse kinematic solutions 
can be determined as 
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 Note in Eqs. (6) and (7) that for a given pair of Dy1 
and Dz1 there exist two solutions pairs of θ11 and θ21. 
Similarly, Link chain 2 and Link chain 3 operate on 
planes parallel to the X-Z plane and the X-Y plane, 
respectively. The coordinate of D2 and D3 are (Dx2, Y, 
Dz2) and (Dx3, Dy3, Z), respectively (see Figs. 2b and 
2c). The corresponding relations between the input 
joint angles and the point Ds are 

     )cos(lcosl 2212u212l22  xD                 (8) 

)sin(lsinl 2212u212l22  zD                   (9) 

)cos(lcosl 2313u313l33  xD                (10) 

)sin(lsinl 2313u313l33  yD                 (11) 

and the inverse kinematic solutions are 
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 Note that for the inverse kinematic problem X, Y 
and Z are variables that need not be determined 
directly. They serve to follow the constraints resulted 
from connecting the three link chains to the moving 
platform.  

3.2 Forward Kinematic  
 An opposite problem is: 1) given the six input 
variables θ11, θ21, θ12, θ22, θ13 and θ23, 2) find the three 
coordinates of Dis which together can be used to solve 
for the position of the end-effector point E and 3) the 
rotation matrix R. Note that Dy1, Dz1, Dx2, Dz2 Dx3, Dy3 
can be directly determined from Eqs. (4)-(5) and Eqs. 
(8)-(11). The remaining steps are to find X, Y and Z. 
These 3 variables are related through constraints: 

    ,dDD 121    (16) 

  ,dDD 232    (17) 

  ,dDD 331    (18) 

where d1, d2 and d3 are the distances between 
corresponding points. Equations (16)-(18) can be 
rearranged as 
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Note that the coefficients k0, k3 are functions of Z, k1, 
k2, k4, k5, m1, m2 are constants and m0 is a functions of X. 
Dialytic elimination method [9] can be used to 
eliminate Y and X in Eqs. (19), (20) and (21), resulting 
in a function of 8th-order polynomial in Z: 

 ,0
8
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where the coefficients ai (i =1,2,…,8) are constants 
(the symbolic forms of ai are very lengthy and their 
expressions are not shown here). There are maximum 
of 8 possible distinct solutions of Z. Once Zs are 
obtained X can be directly calculated from Eq. (19). Y 
can be obtained from Eqs. (20) or (21). Note that for 
each value of Z, two real values (if exist) of X and two 
real values (if exist) of Y can be obtained. However, 
the dialytic elimination procedure may produce 
erroneous solutions. Therefore all the obtained 
solutions must be checked with the original constraints 
(16)-(18). The maximum number of real solutions is 8. 
However, depending on the chosen values of θ11, θ21, 
θ12, θ22, θ13 and θ23 and length parameters, some 
solutions of polynomial equations may return complex 
conjugate values. In this case, the number of real 
solutions will be reduced. In some cases of input 
angles, the solution may not exist at all because the 
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manipulator cannot physically reach that space. 
Consider the following numerical examples for 
parameters lli =400 mm, lui =450 mm, lbi =0 and di 
=110 mm (i=1, 2, 3) and the input angles shown in 
Table 1. 

Table. 1 input values for numerical examples 
 θ11 θ21 θ12 θ22 θ13 θ23 

Case 1 112.8 -101.4 86.4 -57.5 105.5 -70.3

Case 2 90.0 -90.0 88.0 -64.8 88.0 -64.8

Case 3 109.4 -125.2 99.4 -69.0 109.0 -76.3

Case 4 53.5 -31.5 56.7 -20.5 45.6 -1.3

Case 1: four solutions 
 In this case, the solutions for Z are 538.7, 551.2, 
552.4, 695.5, 629.4±23.7j and 724.4±3.7j. There are 
four real solution and two complex conjugate pairs. 
For each real value of Z value, there exist one real 
values for each Y and X. Therefore, there are four 
solutions. The configurations corresponding to these 
real solutions are shown in Fig. 3. 

Case 2: eight solutions 
 In this case, the solutions for Z are 500.0, 500.0, 
500.0, 500.0, 655.0, 655.0, 655.0, 655.0. Note that all 

solutions for Z are real but they are repeated. There are 
only two distinct solutions at 500.0 and 655.0. For 
each real value of Z there exist 2 distinct real values 
for each of Y and X. The configurations corresponding 
to a total of eight real solutions are shown in Fig.4. 

Case 3: two solutions  
 In this case, the solutions for Z are 555.1, 689.8, 
534.3±3.1j, 622.5±104.7j, 710.6±3.3j. Here there are 2 
real solutions for Z. These are substituted to solve for 
X and Y. When checking with the original constraints, 
only two real solutions exist. These configurations are 
shown in Fig.5. Note that in these configurations, the 
edge connecting points 1 and 2 are on the plane 
parallel to the X-Y plane. 

Case 4: one solution  
 In this case, the solutions for Z are 600.0, 600.0, 
506.8±9.2j, 600.0±131.2j, 693.3±9.2j. There are 
repeated real solutions at 600.0. After finding X and Y, 
it turns out that only one solution exists. This solution 
corresponds to the configuration where the end 
effector plate is parallel to the X-Y plane as shown in 
Fig.6. 

 

 

 

 

 

 

 

 

Fig. 3 Forward kinematic solution for case 1 (four solutions) 

Z=538.7 
Y=472.5 
X=353.1 

Z=552.4 
Y=510.7 
X=205.3 

Z=552.4 
Y=404.1 
X=366.3 

Z=695.5 
Y=363.7 
X=351.6 
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Fig. 4 Forward kinematic solution for case 2 (eight solutions) 

Z=500.0 
Y=350.0 
X=505.0 

Z=500.0 
Y=505.0 
X=350.0 

Z=500.0 
Y=350.0 
X=350.0 

Z=500.0 
Y=505.0 
X=505.0 

Z=655.0 
Y=350.0 
X=350.0 

Z=655.0 
Y=505.0 
X=350.0 

Z=655.0 
Y=350.0 
X=505.0 

Z=655.0 
Y=505.0 
X=505.0 

Fig. 5 Forward kinematic solution for case 3 (two solutions) 

Z=689.8 
Y=322.5 
X=355.0 

Z=555.1
Y=322.5 
X=355 
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 From the examples above, case 1 corresponds to 
general configurations where the plane of the end-
effector or the line representing the edge is not parallel 
to the plane X-Y or Y-Z or X-Z and the end-effector is 
well within the reachable workspace of the robot. Case 
2-4 are special cases in terms of geometry. Case 2 is 
where the all three passive lines intersect at one point 
creating special symmetry. Similarly, case 3 is where 
two passives lines (in this case along x and y) intersect.  
Therefore the line connecting corner 1 and 2 of the 
end-effector are in the plane parallel to X-Y plane. 
Case 4 is where the three lines are distanced apart 
close to the side length of the end-effector. This 
corresponds to the configuration where the robot is at 
the boundary of the reachable workspace. 

4. Conclusions 

 In this paper, a 6-DOF 3- SRRP  parallel robot is 
introduced and kinematic analyses are provided. The 
inverse kinematic can be obtained straightforwardly. 
For a given end-effector position and orientation, there 
exist 2 configurations of each link chain accounting for 
a total 8 inverse kinematic solutions. The forward 
kinematic solutions of this mechanism can be obtained 
through dialytic elimination method. In general, there 
are 4 forward kinematics solutions. However at a 
special configuration where all three passive lines 
intersect at one point there can be a maximum of 8 real 
solutions. The number of real solutions will be reduced 
to 2 when one of the edges of the end-effector is 
parallel to one of the passive planes. Furthermore only 
one solution exists when the end-effecor plane is 
parallel to one of the passive planes. 
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Fig. 6 Forward kinematic solution for case 4 (one solution)

Z=600.0 
Y=583.1 
X=712.0 


