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Abstract 

The double inverted pendulum on a cart is one of the classical unstable underactuated systems. In order to 
stabilize the system, various control techniques have been proposed. One of the applicable control methods is the 
sliding mode control. Even though the method can stabilize the system, the control system is affected by the 
chattering phenomena. The purpose of this study; therefore, was to employ the synergetic controller to the double 
inverted pendulum system. Furthermore, the set of controller parameters was determined systematically by the ant 
colony optimization (ACO). To validate the effectiveness of the synergetic controller, the simulation of the double 
inverted pendulum system under the synergetic controller was carried out, and the results were compared with those 
of the sliding mode controller. The simulation results showed that the synergetic control could stabilize the system, 
and the chattering phenomena in control input signal could be reduced. In conclusions, the synergetic controller with 
ACO can be employed successfully on the double inverted pendulum on a cart. 
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1. Introduction 

 The double inverted pendulum on a cart is one of 
the underactuated systems which, has been interested 
by many researchers for a number of years, [1-7]. 
Stabilization of the double inverted pendulum system 
is the challenge problem in the control area as several 
developed control methods have been employed to 
stabilize this system [1-7]. The synergetic control 
method is one of the interesting control methods 
applicable for various dynamical systems. Previous 
works, related the synergetic control method in both 
theoretical aspects and applications, have been 
presented as seen in literature [8-20]. The development 
of the synergetic control theory initially was proposed 
by Kolesnikov and colleges [10, 16, 17]. The main 
favorable aspect of the method is the smooth control 
signal [9, 11, 15]. This characteristic is an advantage 
over the sliding mode control (SMC) which has the 
chattering in the control signal [5-7, 9, 11, 15, 21]. In 
addition, the synergetic controlled system with 
appropriate macro variables can have the following 
desirable characteristics: 1) global stability, 2) 
parameter insensitivity, and 3) noise suppression [8]. 
Kolesnikov [12] applied this technique to stabilize the 
single inverted pendulum on a cart. In general, the 
selection or tuning of the optimal control parameters 
can be achieved by using the optimization algorithms 
such as the particle swarm optimization (PSO) and the 
genetic algorithm (GA), [5,19-20,22]. One of the well-
known optimization algorithms is the ant colony 
optimization (ACO). The development and use of the 

ACO have been presented in previous works [23-29]. 
The relevant strength of the ACO method is from the 
distributed computation [27-28]. To the best of 
authors’ knowledge, applying the synergetic control to 
stabilize the double inverted pendulum has not been 
proposed. Thus, an investigation of the ability of the 
SC method with ACO to stabilize the double inverted 
pendulum system is the main focus of this study. The 
simulation of the control system was used to present 
the ability of the SC method for the pendulum system. 
 The organization of this paper is presented as 
follows. The mathematical model of the double 
inverted pendulum on a cart is first presented in 
Section 2. The details of controller design are provided 
in Section 3. Then, the simulation results of the study 
are presented and discussed in Section 4. Finally, the 
conclusion from this study is stated in Section 5. 
 

2. Mathematical Model  

 The mathematical model of the double inverted 
pendulum on a cart is derived and presented in [2]. 
This model of the system and related information from 
[2] is used in this study. The equation of motion and 
the state space representation of the system are 
presented in the following two subsections. 

2.1 Equation of motion 

 The equation of motion of the double inverted 
pendulum on a cart in Fig. 1 can be presented in terms 
of the displacement of the cart ( 0 ), angular 

displacement of the lower pendulum ( 1 ), and angular 
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displacement of the upper pendulum ( 2 ) as Eq.(1), 

[2]:   

  ( ) ( , ) ( )D C G Hu           ,  (1) 

where  
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The terms 1 2 6, ....,d d d , 1f , and 2f  are defined as 

follows [2]: 1 0 1 2d m m m   , 2 1 2 1

1
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where 0m  , 1m  , and 2m  represents the masses of the 

cart, the lower pendulum, and the upper pendulum 
respectively. The length of the lower and the upper 
pendulum are denoted by 1L  and 2L respectively. 

 
Fig. 1 Double inverted pendulum on a cart, [2]. 

2.2 State space representation 
 Based on Eq. (1), the state space representation of 
the double inverted pendulum can be presented in term 

of the state vector, x
 

   
, as Eq.(2), [2]: 
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 The linearized state space model can be obtained 
from linearizing Eq. (2) around the equilibrium point. 
Thus, the linearized state space representation can be 
expressed as Eq. (3), [2]: 

   x Ax Bu  ,                        (3) 
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 Readers can find more details about the 
mathematical model of the system in [2]. 
 

3. Controller Design 

 The synergetic controller design for the double 
inverted pendulum on a cart is presented in this section, 
together with the ant colony optimization algorithm for 
control parameter determination.  

3.1 Design of synergetic control 
 Based on [8-12, 15], the design procedure of the 
synergetic control for the double inverted pendulum on 
a cart can be presented as follows. 
 In the first step of the design procedure, the macro 
variable, , is defined as Eq. (4), [8-9, 11, 15]: 

 ( ) Hs x C x    (4) 

where 1 2 3 4 5 6[ ]HC C C C C C C . The values 

of 1C , 2C , 3C , 4C , 5C , and 6C  are real constants. 

Consequently, the derivative of the macro variable in 
(4) can be presented as Eq. (5), [8-9, 11, 15]: 

 ( )x Hs x x C x     , (5) 

where 
( )

( )
T

x

s x
s x

x

 
   

, [11, 15].   

 In the second step, the dynamic evolution is 
defined to confine the state variables of the system as 
Eq. (6), [8-9, 11, 15]: 

 0T   , (6) 

where T  is the positive value. The selection of T is 
from the designer [8-9, 11, 15]. Under the control 
input, the convergent rate of the state variables 
to 0  depends on the value of T  [8-9, 11, 15]. 

 In the last step, determination of control, u , is 
performed. Substituting Eq. (3) - (5) into Eq. (6), the 
control input can be solved as Eq. (7), [8-9, 11, 15]: 

 1 1 1( ) ( )H H Hu C B C Ax C B T s      (7) 
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 According to [11, 15], the proof of the closed- 
loop system stability under the SC method can be 
presented as follows. First, the Lyapunov function is 
written in term of the macro variable,  , as Eq. (8), 

[11, 15]: 

 20.5V    (8) 

The derivative of the Lyapunov function can be 
determined as Eq. (9), [11, 15]: 

 V     (9) 

Based on Eq. (4) and (5), V  can be written as Eq. (10), 
[11, 15]: 

 ( )( ( ) )xV s x s x x    

    ( ) ( )[ ]xs x s x Ax Bu   (10) 

Then, evaluating control input, u , in Eq. (7) into Eq. 
(10), the derivative of the Lyapunov function, V , can 
be expressed as Eq. (11), [11, 15]:   

 1[ ( ( )H H HV sC Ax B C B C Ax    

 1 1( ) )]HC B T s   

  1sT s   

   1 2 0T s   . (11) 

Equation (11) implies that the control system is stable 
[11, 15]. Thus, the control input in Eq. (7) can stabilize 
the double inverted pendulum on a cart. The state 
variables of the control system can be driven to the 
equilibrium point.  More details on the method can be 
further determined from [8-12, 15-17]. 
 It is important to note that the synergetic control 
(SC) method, and the sliding mode control (SMC) 
method have the same important characteristic in 
terms of the equivalent control; therefore, the surface 
function ( )s x or sliding surface defined for the SMC 

method can be used for the synergetic control (SC) [5, 
9, 11, 15]. Consequently, the techniques such as LQR 
and pole placement used in the SMC method can be 
utilized to determine the coefficients, 1 6,...,C C , for the 

macro variable, ( )s x  , in Eq.(4), [5, 7-9, 11, 15, 21, 

30-31]. 

3.2 Ant colony optimization (ACO) 
 Some optimization algorithms have been 

employed with the synergetic control methods for 
tuning the controller parameters [19-20]. For example, 
the particle swarm optimization was used with the 
synergetic control (SC) in previous works [19-20]. 

 The Ant colony optimization (ACO) algorithm 
was developed by Dorigo and colleagues and was 
inspired by ant activities to search the food with the 
optimal paths and presented in previous works [23-29]. 
In the ACO algorithm, artificial ants are used to 
construct solutions by exploring on a set of 
optimization variables [27-29]. The movement of ants 
depends on the pheromone given by other ants [27-29]. 

The ACO is a technique to find the approximated 
solutions of various optimization problems [27-28]. 
The ACO was used to find the optimal gain of the state 
feedback controller for the single inverted pendulum 
[29]. 
 In order to determine the controller parameters by 
using ACO, these parameters are considered as the 
optimization or decision variables [5, 19, 29].  
 In this study, the ACO was applied to tune the 
controller parameters of the SC method 

including 1 2 3 4 5 6, , , , ,      , and T  [5, 19, 29]. 

The optimal values of 1 6,...,C C can be found from 

optimal eigenvalues [5, 21, 31]. Based on the tuning 
the parameters of the controller by using optimization 
algorithm and the ant colony optimization [5, 19, 27-
29], the steps of ACO algorithm using in this paper are 
presented as follows: Step 1: The ACO parameters and 
the pheromone matrix are initialized. Step 2: The 
searching space nodes of each optimization variable 
are constructed. Step 3: The random allocation of ants 
to the variable nodes is performed. Step4: The 
simulation of the controlled double inverted pendulum 
system with the corresponding controller parameters 
from each ant is carried out. Step 5: The cost function 
in Eq. (12) is computed. Also, if the cost function is 
minimum, the set of the best controller parameters is 
updated. Step 6: The change of the pheromone is 
computed and the pheromone matrix is updated. Step 
7: Steps 4 to 6 are repeated for each ant. Step 8: Step 3 
to 7 are repeated for N  iterations. 
 The ACO is performed to search for the optimal 
value of the set of controller parameters to minimize 
the cost function which is the integral time absolute 
error (ITAE) as Eq. (12), [19, 22, 27-29]: 

 
0

( )
t

J t e t dt   (12) 

 

4. Simulations 

 The example of the double inverted pendulum 
system under the synergetic control is presented in 
subsection 4.1. Then, the simulation results and 
discussion are presented in subsection 4.2. 

4.1 Simulation example 
 The parameters of the double inverted pendulum 
on a cart which are masses and length of the 
pendulums and the cart in Eq.(3) can be presented as 
follows [2]: i) 0 1.5m kg , 1 0.5m kg , and 

2 0.75m kg , ii) 1 0.5L m and 2 0.75L m .                      

The initial condition of the system was assumed as 
(0) [0.0100 0.1047 0.1047 0 0 0]Tx  .The disturbance 

was the Gaussian function,
2 2( ) / (2 )( ) d dt c b

dd t a e  , 

where 0.5da  , 0.5db  , and 10dc  .  

 The control parameters 1 6,...,C C  could be 

determined by using the linear quadratic regulator 
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(LQR) algorithm [21, 30]. The matrices of Q and R   
for the LQR algorithm were defined as Eq. (13), [21, 
30]:  

 

400 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 500 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Q

 
 
 
 

  
 
 
 
  

 and 1R  . (13) 

The numeric values of 1C , 2C , 3C , 4C , 5C , and 6C  

given by LQR optimization are 20.0000,  
387.5010 , 628.820 , 39.9246 , 7.6765 ,  and 

101.1541 respectively. The ACO algorithm was 
performed for 10 iterations with 100 ants over the 
interval of T from 0.05  to 0.1 . The value of T  
yielded by the ACO is 0.078258 . 
 The synergetic control (SC) method was applied 
to the pendulum system. Then, the simulation results 
corresponding to the SC method were compared to 
those of the sliding mode control (SMC) method. The 
SMC method used in this study is presented as Eq. 
(14), [11, 21, 31]: 

1 1( ) ( ) ( )H H Hu C B C Ax C B sign s     ,    (14) 

where   is the design parameter [11,21,31]. The value 

of was selected as 10  . 

 In order to demonstrate the ability of the ACO for 
the controller parameter determination, the ACO was 
employed to determine the controller parameters 
which are 1 6,...,C C , and T . Since the values of  

1 6,...,C C could be found from the eigenvalues , 

1 6,....,  ; therefore, these eigenvalues were 

considered as the optimization variables for ACO 
[5,21,31]. The range of each eigenvalue was from 10  
to 4  , and T  was constrained within the range from 
0.05 to 0.1. After performing the ACO with 100 ants 
for 10 iterations, the optimal values of controller 
parameters were determined as follows:                        
i) T=0.073407 ii) 1=-9.2697, 2=-10.0000, 

3= -6.6781, 4=-4.6467, 5=-4.8455, and 6= -9.5860. 
Thus, the corresponding values of the parameters of 
the controller, 1 6,...,C C , could be determined as 

C1=0.2025103, C2=-0.3379103, C3=1.1373103, 

C4=0.1789 103, C5=0.0821103 and C6=0.2083103 
by using Ackermann’s formulas [5, 21, 31]. 
 In simulation, the Runge-Kutta method was used 
for the numerical integration and performed from 

0t   to 70t   seconds with the time step of 0.01 
seconds. 

4.2 Simulation results and discussion 
 The simulation results of the double inverted 
pendulum on a cart system under the synergetic 
control with controller parameter T  given by the ACO 

and sliding mode control are presented in Figs. 2 and 3 
respectively. The time responses of the double inverted 
pendulum system under the SC method are presented 
in Fig. 2(a), while those of the SMC method are 
presented in Fig. 2(b). The control input of both 
methods are plotted and shown in Fig. 3(a). The zoom-
in plot of the control input is shown in Fig. 3(b). 
 Additionally, the simulation results of the double 
inverted pendulum system manipulated by the SC 
method with the optimal controller parameters of 

1 6,...,C C , and T  yielded by ACO are presented in 

Figs. 4 and 5. The time responses of all state variables 
of the control system are presented in Fig. 4.  The 
corresponding SC control input is shown in Fig. 5. 
 Considering Fig. 2(a), all state variables 
corresponding to all of the links of the double inverted 
pendulum system under the SC method were driven to 
zero as the time increased. The synergetic control 
could stabilize the pendulum system. Fig. 2(b) showed 
that the SMC method could also stabilize the system. 
However, the control input of the SC method was 
smoother compared to that of SMC method which 
contains the chattering as seen in Figs. 3(a) and 3(b).  
 In the case when the ACO was used to determine 
all controller parameters of the SC method, the SC 
method could stabilize the double inverted pendulum 
system as clearly seen in Fig. 4. The preferable 
characteristic of the control input can be seen in Fig. 5. 
Thus, the ACO can provide a systematic way for 
designers to determine the parameters of the SC 
method as applying optimization algorithms for this 
purpose, as shown in previous works [5, 19-20, 22, 29].  
 The control signals in Figs. 3 and 5 showed that 
the SC method could stabilize the considered double 
inverted pendulum system with the smooth control. In 
practical situations, the smoothness of the control 
signal is a preferable characteristic, while the 
chattering phenomenon needs to be avoided or reduced 
[5-7, 9, 11, 15, 21]. 
 Therefore, it is clear that the SC method with the 
ACO controller parameter tuning can be applied for 
stabilizing of the double inverted pendulum on a cart 
system. 
 

5. Conclusion 

 The conclusion can be summarized as follows. 
First, the synergetic controller can stabilize the double 
inverted pendulum on a cart. Second, the use of ACO 
algorithm provides the systematic way for the designer 
to determine the designed parameter for the SC 
method. Third, the SC method can manipulate the 
pendulum system with the smooth control and provide 
the improvement in terms of the chattering reduction. 
Thus, the synergetic control with ACO is an 
acceptable method to stabilize the double inverted 
pendulum on a cart. 
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Fig. 2 Time responses of the control system:          
 (a) the SC method with the controller parameter 

T given by the ACO (b) the SMC method. 
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Fig. 3 Control inputs of the SC and SMC methods: 
(a) The plot of control signals for 0 70t  sec 

(b) The zoom-in plot of control signals. 
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Fig. 4 Time responses of the control system under  

the SC method with all controller parameters  
given by the ACO.  
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Fig. 5 The control input of the SC method with  

all controller parameters given by ACO. 
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