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Abstract

Milling is one of the most versatile metal removal processes in which a rotating cutter removes
material of a workpiece. One of limit factors on achieving higher productivity is regenerative chatter
arose in cutting processes. Chatter is an unstable cutting condition with excessive vibrations, which leads
to a poor surface finish, tool wear and potential damage to the machine or tool. Stability of conventional
milling processes are widely studied in the pass decades. Recently, the topic of variable pitch and variable
helix milling tools has gained attention as an alternative method to improve stability boundary of the
milling processes by altering chatter pattern using irregular setting of a milling cutter. This study presents
the application of semi-discretization method on stability analysis of variable pitch and variable helix

milling tools.
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1. Introduction

Variable pitch and helix milling tools have
been studied by recent researches [1-2, 7] as an
alternative mean for improving chatter stability.
Fig.1 schematically shows a variable pitch and
helix milling tool. It can be seen that each axial
layer or disk of the tool can have different angles
between one tooth and the next. This provides the
possibility to avoid chatter occurred by judicious
choice of the tool pitch and helix angles. The first
analytical method on irregular tooth pitch cutter
was introduced by Slavicek [7] as an alternative
passive method to improve the stability condition
in the milling process, using Tlusty’s orthogonal
cutting chatter theory [8]. Altintas et al [2]
extended their so-called single solution method to
predict the stability in variable pitch cutter. Up to
date, a few studies were proposed to investigate
the effect of higher order harmonics of the cutting
forces on stability in such variable pitch cutter.
However, in the recent publication, Turner et al
[1] described the use of different helix angles on
an end-mill to improve stability condition, and
stability was predicted using an average helix
angle along an axial depth of cut based on the
extended method of single frequency solution.

There have been little or no reports of
stability models for these classes of milling tool
with interrupt cutting at low radial immersion. It
transpires that this stability problem is well suited
to the semi-discretization method developed by
Insperger et al [3-5], which will be extended in
this study. This paper will describe the theoretical
basic and presents the extended analytic on
stability of variable pitch and helix milling tools.
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Fig. 1 Variable pitch and helix milling tool.

2. Mechanistic model of cutting forces

The linear orthogonal cutting forces model
for the milling process is developed based on an
end-mill cutter with a diameter of D, N, flutes

and a constant tooth angle y , as shown in Fig.2.
The tool is rotated at spindle speed of N

revolution per minute (RPM) and the angular
position of the tool is described by &(¢). At each

revolution, the static cutting zone is defined
between the entry cutting angle 6, and the exit

cutting angle 6, . The axial depth of cut Z is
divided into a differential thickness Az with N,
stacks such that Z=Az- N, .

The cutting force components, F, and Fy,
acting on the tool can be described by [9],
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Fig.2 Dynamic model of a milling system
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Where j refers to the flute number and &
denotes index of the infinitesimal disk at axial
height z, as shown in Fig.1. K, and K, are the
specific tangential and radial cutting force
coefficients, respectively. W/’k(t) defines the

directional oriented coefficient matrix, which is
periodic at tooth passing frequency for the cutter
with regular pitch angle, but at spindle frequency
for the cutter with variable pitch angle.

Next, the cutting force model is extended to
include the effect of different helix angle on each

il

—cé’jv,‘(t)

— cijk(t) — so9jyk (t)
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flute j of the end-mill. This can be achieved by
introducing the instantaneous angular position
04 (t) of flute j at axial height z as follows,

2tany,
S Z

3)

where y/; defines the relative angle between

th

the first and ;™ -flutes. y; defines the constant

helix angle on flute j. 6, (t) is the based angular
position of the spindle rotation N, at time ¢,
determined by 6,()= N, -¢ (rad). The cutter is
assumed to have a different constant helix angle
on each flute, thes the pitch angle ¢, , of flute j

at axial height z is related to the relative angle
y,; of flute j and j—1 as follows,

21t =1 .
¢j,k=(l//j—l//,—_1)+ (anyjpanyj 1)'2 “4)

Then, the time delay 7, of flute j at axial

height z can be resolved as a function of the
pitch angle ¢, , and the spindle speed N, RPM

as the form,

T = % (5)
; 27 -N,

It can be seen that, by setting the variable
pitch and helix angle on the cutter, the constant
time delay of the conventional milling processes
will be altered. The system becomes the variable
time delay system in comparison to the constant
time delay system of the uniform pitch cutter.

Note that, using the different pitch angle ¢, ,

will result in a non-constant uncut chip thickness
/. ; for each flute of the cutter. Then, Substitute

Eq. (3) into the cutting forces model (Egs. (1) and
(2)) yields the total cutting forces over the axial
depth of cut Z as follows,

1

Coson [0 A0 o

static cutting force part

Ty ecou 0,0 K@oHMMDd}

regenerative cutting force part

—ngyk(t) Ayt _Ayt—rm.
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where (Ax,,Ay,)” is a relative displacement
vector of flute ;j at height z of the tool-workpiece

system and (AxH DAY g )T refers to a state
Ik 77

vector at time delay 7, . Then, defines the static

cutting force due to the uncut chip thickness f; ;

at time ¢ of flute j as (FSX,FSY)T, Eq. (6) can
be re-written in a compact form and as,

ol 15

static cutting force
(7)

& | oz Ax, — Ax,_ kg

regenerative cutting force

Where
—sﬁjyk(t) +c9jyk(t)
Wi (t)= Bk (t){_caj,k (t) —50,, (t)}
K, -50,,(t) —K, -c0,()
[ 0,00 —c0,0) } ®
&k (t) - {(1) o :tfl’erva?sz i

Wj!k(t) describes the directional oriented

coefficient matrix, which is a time-periodic at the
spindle rotation frequency for the case of
irregular pitch cutters. However, if the cutter has
the uniform pitch angle, then 7, ; will reduce into
a constant time delay 7. Hence, W, , (t) becomes

a periodic at the tooth passing frequency.
Then, the continuous cutting force of Eq. (7)
is discretizated by dividing the axial depth of cut

Z into N, elements of a finite axial disk of
thickness Az, such that Z = N, - Az. This results

in the discrete cutting force model as,

i (,)} H )
Fy (t) Fyy
static cutting force (9)
i%“ AZK, W, A = i,
== Ay, AV
regenerative cutting force

The corresponding variable time delay 7,

of the finite axial disk of element k£ at flute j
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can be determined by,

s = (l//,- _‘/’j—l)
21t —t :
N (an)/‘, an7.11).(k+lj.AZ (10)
D 2
60><¢j’k
T =
2x-N,

if the case of a variable pitch end-mill is
considered, then y, =y, .

¢ =V,
cutting forces with the discrete form of Eq. (9),
itis now applicable to apply the method of semi-
discretization to analyze stability problem of the
cutting system with variable time delay.

Thus, ¢,, becomes

-y, and 7,, =7;. In representing the

3. Stability analysis in milling with
variable time delay
Considering the dynamics of the milling
process, the first order state equation of the
milling system can be expressed as [9],

qt:A'qt_

BiZ(AzKW {Ay i;”D(ll)

j=1 k=1

=C- d =
an =C-
Ayt q Ayt72.1 q t—T‘/-

where (s the state vector, which defines the

decoupled modal coordinates of the system. A,

B and C are a modal parameters matrix of the
dynamic cutting system, which can be determined
using the method of modal testing and analysis
techniques. Since the modal parameters of the

system are constant, thus B is a constant matrix
that can be distributed into the summation and
rewritten Eq. (11) as,

q,=Aq,-

ii{&l{ BW,, (1 ){i;i _i;, T D (12)

i=1 k=1

At the instantaneous time ¢, the state vector
q,., is dependent on flute j and height z of the
finite axial disk element as oppose to the state
vector (,, thus only the state vector ¢, can be
taken off the summation. Then, decoupling the
state vector (Axt , Ayt) " of Eq. (12) yields,
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q= {A—Zz“zk(Athﬁwj,k (0)- A)}q
Jj=1 k=1 (13)
N. Ny

203 ek BW,, ()-C-a,,, )
=1 k=1
Since Wj’k(t) is periodic at the spindle
rotation N, RPM , the principle period is
T =60/N,, . The time period T is divided into
p equal intervals with length A¢ as shown by
the discretization scheme of Fig.3 such that,

T
ar=T 60 (14)
p Nq-p
For t€[t;,t,,,]and applying the method of

single frequency solution, then W, ;, becomes

an average coefficient over the period 7' and
defined by a constant W, ,, as,

1 per
W, . :Fjo W, (r)-dr (15)

If the method of convolution integral is
adapted, then W, ,, is held constant over the i"

interval with length Az such that,

1 t;+At
W=7, W, (t)-dt  (16)
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Fig.3 Discretization scheme

The 26" Conference of the Mechanical Engineering Network of Thailand

October 2012, Chiang Rai

Discretization of the delayed term yields the
approximated delayed states as,

Q(ti - 2'j,k)z Q(ti + % - Tj,k)

W, qi—mM + W qi—mjy,grl = qz'jv,(,i

(7

The delayed index m;, is defined by
relationship between Ar and the delay 7, as,

Tie 1
m,, =fix| 2= +— 18
sk [ At 2J (1%)
where the weights of q,_, and Qi p,, 1 ATC
given by,
T i k 1
- =;—t—(m1k+ J and w, ;, =1-w,

Substitution of Egs. (15)-(17) into Eq. (13)
over each time interval i of #€[t,;,,], where

q(tl.):q,‘_. Thus, Eq. (13) can be approximated

as,
qt, =A; q, +
N. N,
Z [Bi,j,k (Wa,j,k PR T Wik Dimm,, )] (19)
Jj=1 k=1
Where
-3 ek w,, -€)
A, =A- AzKBW, ,-C
;hl TR 0
B, ,=zKBW,_,-C

Since A, and B, are constant coefficients for
t, €lt..t.,,], the system of Eq. (13) is linearized

i2Yi+l
by the approximating system of Eq. (20) for
t, €[t,.t,,,], then the principle of superposition

exists. The solution of Eq. (20) for the initial
condition q(z,)= q, reads,

q(t)=e*q; +
i N, (eA,At B I)Ai_l ) 21
== B, (Wa,/,k Qi1 ¥ Wo ke Diom )

For time ¢ =¢,,,, this gives q(t)qu.+l and

the state q,,, is given by,
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ZZ [Q,-,j,k (Wa,j,k Qi1 T Wo ok Diem, ) (22)
71 k=l
Where
P, =exp(A,Af)

Qi,j,k =[exp(A;Ar) - I]A;lBi’j’k (23)

Since the system of Eq. (13) is variable time
delay such that m;, is not constant, then the
finite dimension of the discrete map is determined
by the integer m,, . If Eq. (13) represents the
milling system using the » -dimensional state
vector, then the approximated n(m,, +2) -
dimensional state vector is defined by,

q; =<‘]is‘?i9‘]i719%72 o iy +1aqi—mmax)T

max

and the discrete map can be constructed as,
9, =P q (24)

where each n(mmaX +2) -dimensional transition

matrix @, is given by,

[P, 0 - 0 0 O]
1 o] o 000
P N ¢ @)
0 0o o - 1 0
[0 o] o 01 0]
[ mM—l mj ]
0 o 00w, Qe W4 Q
v, v [0 o] -~ 0 0 0
[0 o] -~ 0 0
JRREL e :
[0 o] - 0 0
0o o] - o 0 0 0]

In the case of single frequency approximation,
Eq. (25) becomes the delayed transition matrix
@, since @, is constant over all discretization
intervals. Alternatively, for applying the method
of convolution integral, the delayed Floquet
transition matrix @, can be obtained by
convolution of Eq. (25) over the principle period
T for i=0.,1,...,k—1, as follows

=, - D, DD (26)
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+2)xn(m,, +2) -dimensional

max

The n(m
matrix @, represents an approximation of the

max

infinite dimensional solution of Eq. (13), and the
eigenvalues of @, can be used to evaluate
stability of Eq. (13). If all eigenvalues of @, are
within the unit circle, then the system is
asymptotically stable. If one of the eigenvalues of
@, is on the unit circle while the rest are within
the unit circle, then the system becomes critically
stable. Otherwise, if one of the eigenvalues of
@, is outside the unit circle, then the system is

unstable and thus chatter occurs.

4. Corresponding chatter frequencies

Since stability analysis of Eq. (13) is based
on the approximated discrete-time system, it is
known that the eigenvalues of the corresponding
discrete-time system can be transformed to the
eigenvalues of the corresponding continuous-time
system [10]. Hence, if ¢ defines the eigenvalues
of the approximated discrete-time system of Eq.
(13), then the corresponding ecigenvalues A of
the continuous system can be obtained by,

27

where 7' denotes a sampling period of the
discrete time system, which refers to the principle
period at the spindle rotation in this case.

It is clearly seen that frequencies of the
system vibrations can be determined according to
imaginary part of the eigenvalues 4. However, it
is important to note that the transformation from
the discrete-time system into the continuous-time
system is not unique. This results in accumulation
of multipliers of 27 to imaginary part of A4 [10].

This allows the corresponding vibration

frequencies f, . to be determined as follows,

corr

Soom = {i ; + 127”} rad/s

= i&+l& Hz
2 60

where/=...,-1,0,1,...

(28)

If one of Re(4,)=0 of Eq. (27) is zero, the
system becomes critically stable. This results in
pure oscillation of the system at corresponding
frequency determined from Im(1)= . Since the
principle period is larger than the maximum
delayed period, three types of instabilities of
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periodic  solutions associated to chatter can
possibly occur; a Secondary Hopf-bifurcation, a
Period-doubling bifurcation and a Period-one
bifurcation. Its corresponding chatter frequencies
are listed in Table. 1 [9].

Table. 1 Corresponding chatter frequencies

Type of bifurcation CorrefspondenF chatter
requencies
w; N
Secondary Hopf +—L 42 Hy
2 60
. . 1
Period-doubling [ +/ j No Hz
2 60
Period-one 0+ l% Hz
60

5. Stability prediction, case studies

The proposed semi-discretization method for
the milling process with variable time delay has
been evaluated by reconsidering the stability in
milling with a variable pitch cutter. Altintas et al
[2] presented both numerical and experimental
data on the stability analysis of a milling process
with variable pitch cutters. This was based on the
method of modified single frequency solution,
where the evaluation of stability was performed
by scanning all possible chatter frequencies and
chatter vibration wavelengths.

In [2], the case of a variable pitch milling was
investigated using a 2-directional milling system
with the dynamics parameters listed in Table. 2.
The tool parameters used in the study were: a 4-
flutes cutter having diameter 19.05 mm with
variable pitch angle of 70°—110°-70°-110° and
helix angle of 30°. Cutting tests were conducted
on Al-7075 specimens at feed rate 0.0508
mm/tooth with the specific cutting coefficients:

K, =697x10° N/m” and K, = 0.367 .

Table. 2 Dynamic parameters of the milling cutter

Direction | Mode | @, [Hz]| ¢[%] | Residue
1| 443.62 | 2.86 | 0.08989
X 2" | 563.55 | 5.58 | 0.6673
3¢ | 77852 | 5.90 | 0.07655
y 1| 516.27 | 2.50 0.834

To apply the semi-discretization method in
this study, first, the first-order state equation
describing the 2-directional milling system was
constructed and then substituted into Eq. (13).
Since the varying pitch angle on the cutter is
repeated for every 2-flutes, W, , (¢) is a periodic

function with the principle period 7' at the rate of
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half the spindle speed N,, , thus 7 =60/(N,/2).
Then, discretization of 7' into p intervals, such
that 7' = p - At . In this study, discretization of the
principle period was chosen for p =50 in order

to preserve computational time. The delayed
Floquet transition matrix @, is then numerically

evaluated over specific range of spindle speeds
and depths of cut using the Matlab programming.
The analysis was done on both the methods of
single frequency approximation (doted-line) and
the convolution integral method (solid-line), as
shown in Fig. 4.

For a variable pitch cutter with constant helix
angle, the time delay can be determined by the
angle between two subsequence teeth. The
varying delay for given spindle speed is defined
by 60x[70°-110°-70°~110°]/(360° N, ) seconds,
which results in the DDE system with two
constant time delays. The approximated delayed
terms can be obtained using Eqs. (18) and (19)
where the maximum delay index describes a
finite dimension of the approximated discrete
delayed system. Then, the local stability for the
given axial depth of cut Z can be determined by
evaluation of the eigenvalues of the constructed
delayed transition matrix @ as defined by Egs.
(21)-(26). Finally, the stability charts are obtained
by iterating the stability analysis over a set of
spindle speeds and axial depths of cut.

The stability charts for the variable pitch
cutter are presented for half immersion operations
as shown in Fig.4(a) for the stability results
obtained using the extended method of single
frequency solution and Fig.4(b) for the semi-
discretization method. In the frequency diagram,
dash-doted lines denote harmonics of the
principle period of the system and the dashed
lines denote the structural natural frequency. It
can be seen that both the stability charts predict
almost the same stability results apart from the
unstable  period-one and  period-doubling
bifurcations presented in the semi-discretization
method. The boundary of these unstable period-
one and period-doubling types are not significant
since only small part of the stability region are cut
off. It can be seen in the frequency diagram that
the unstable period-one bifurcation is expected if
the corresponding chatter frequencies cross
harmonics of the principle period while the
unstable period-doubling bifurcation occurs if the
corresponding chatter frequencies intersect each
other. However, the routes of instability for the
unstable period doubling are separated quickly
after it passes through -1 on the real axis.
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(a) Stability charts using the single frequency solution method
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Fig.4 Stability charts for the variable pitch end-mill
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Fig.5 Stability charts for the variable pitch end mill at different radial immersions
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It can be seen that all the three types of
instability occur which can be illustrated by the
characteristic multipliers pass through the unit
circle in the complex plane. These routes to
instabilities are illustrated in the bottom graphs
of Fig.4(b) with the corresponding spindle speed
and axial depths of cut shown in the stability
chart. It can be noticed that an abrupt jump of
the characteristic multipliers occurs on all types
of instability. This type of eigenvalue
discontinuity can be attributed to the fact that the
delayed transition matrix @ is asymmetric [6]
due to the effect of two constants time delay of
the system. It can be seen from the frequency
diagram that the spindle speed that pass through
or locate in the vicinity of the chatter frequency
lines should be avoid in milling with this cutter
since large amplitude vibration may occur due to
the unstable period-one bifurcation.

Fig.5 presents comparison of the stability
charts at different radial immersions. These
stability charts were constructed to investigate if
the effect of the unstable period-one and period-
doubling will be significant on low immersion
cutting with the variable pitch cutter. It can be
seen that the method of extended single
frequency solution can provide almost identical
stability results to the convolution integration
method, except unstable period-one and period-
doubling bifurcation as mentioned above. This
suggests that the single frequency solution
method is effective to predict the stability
boundary.

Next, the analysis was applied to investigate
the problem of the cutter with variable helix
angles using the similar set of the structural
dynamic parameters. First, the stability chart for
the cutter with regular pitch angle and varying
helix angle of [40-30-40-30] was
determined with the semi-discretization method
and compared to that of the standard cutter
(dotted line) as shown in Fig.6(a). It can be seen
that different helix angle on each cutter tooth has
significantly no effect on the stability limit but it
tends to re-locate the stable pocket region. Then,
the stability charts for the variable pitch end mill
with three different sets of varying helix angles
are shown in Fig.6(b) for a varying helix angles

of [40 -30-40 —30], Fig.6 (c) for a varying
helix angles of [40 -35-40- 35] and Fig.6(d)

for a varying helix angles of [35 —-40-35- 40].

Again, the analytical stability prediction of the
cutter with variable helix angle indicated no
difference on the limited axial depth of cut in
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comparison to one obtained from the variable
helix cutter (dotted line) and the effect of
varying time delay due to varying helix angle
can be observed in the stable pocket region.
Result of particular interest is that the spindle
speeds where the unstable period-one and
period-doubling occurred remain unchanged for
all of the sets of varying helix angles.

It is worth discussing that on varying helix
angles, one of the limit factors in implementing
different helix angle on each flute is the cutter
geometry. Since two subsequent teeth are not
parallel, this results in the intersection of two
subsequent flutes at a axial position Z,. Thus,

flute length of the cutter becomes shorter and
constricts the chip exit. This can be presented by
a simple trigonometric calculation to obtain the
maximum flute length on the cutter with two
different helix angles. If two subsequent flutes
j and j—1 were set with different helix angle

as defined by 7, and y,, respectively. For
7;>7;,, the maximum flute length £, ; of

flute j for a cutter of a diameter D can be
obtained using the following formula,

h = D4,
h 2(tan 7, —tan 7/./‘71)

where ¢, is the angle between flutes j and

j—1. For a 19.05 mm standard 4-flutes end

mill with helix angles of 40° and 30°, the
maximum flute length is 57.16 mm. Thus, the
effective flute length can be shorter than the
maximum length by a factor of 2.

5. Summary

It has been showed in this paper that the
semi-discretization method is capable of
evaluating the stability in the milling process
with variable time delays. First, the stability
problem for variable pitch end milling
operations was demonstrated. The stability
results from two approximations of the time-
periodic coefficients show almost no difference
in the stability boundary apart from that the
unstable period-one and period-doubling
behaviour can occur on the stability boundary
using the convolution integral method. Then, the
example analysis on various types of end mill
was carried out. The results indicated that
varying helix angles has no effect on the limited
axial depth of cut but tends to change the
boundary curves.
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One of the major disadvantages using the
convolution  integral  method is  the
computational time to generate the stability
charts is tremendous. However, such this study
on stability of milling processes with varying
time delay is a non-linear analysis, thus the
computational time consumed were not the main
focus. It has been observed that in most cases,
the single frequency solution approximation
with discretization of the delayed terms can
predict similar stability results to that of the
convolution integral method, except the cases
concern unstable period-one and period-
doubling bifurcation. Hence, the method of
single frequency approximation of time-periodic
coefficients is suggested if the computational
time is a major factor.

Considering the tool geometry in this study,
varying helix angles shown little effect in
comparison with varying pitch angles. However,
further work is recommended to investigate the
performance for different types of milling cutter
geometries. One of limit factors on
implementing a cutter with varying helix angles
is the cutter geometry. The large difference
between two helix angles setup can result in a
shorter flute length, especially on a small
diameter end mill.

6. Acknowledgement
The author would like to thank the
Department of Mechanical Engineering,
University of Sheffield for useful documents and
research opportunity.

7. References
7.1 Article in Journals
[1] Turner, S., et al., Modelling of the stability
of variable helix end mills, International Journal
of Machine Tools and Manufacture, 2007. 47(9):
p. 1410-1416.
[2] Altintas, Y., S. Engin, and E. Budak,
Analytical Stability Prediction and Design of
Variable Pitch Cutters, Journal of Manufacturing
Science and Engineering, 1999. 121: p. 173-178.
[3] Insperger, T., et al., Stability of up-milling
and down-milling, Part 1: Alternative analytical
methods. International Journal of Machine Tools
and Manufacture, 2003. 43(1): p. 25-34.
[4] Insperger, T., et al., Multiple chatter
frequencies in milling processes. Journal of
Sound and Vibration, 2003. 262(2): p. 333-345.
[5] Insperger, T. and G. Stépan, Updated semi-
discretization method for periodic delay-
differential equations with discrete delay.
International Journal of Numerical Methods in

The 26" Conference of the Mechanical Engineering Network of Thailand

October 2012, Chiang Rai ¥

Engineering, 2004. 61(1): p. 117-141.

[6] Mann, B.P., et al., Milling Bifurcations from
Structural Asymmetry and  Nonlinear
Regeneration, Nonlinear Dynamics, 2005. 42(4):
p- 319-337.

7.2 Proceedings

[7] Slavicek, J. The Effect of Irregular Tooth
Pitch on Stability of Milling. in Proceeding of
the 6th MTDR Conference. 1965. London:
Pergamon Press.

[8] Tlusty, J. and M. Polacek. Stability of
Machine Tools Against Self-Excited Vibration
in  Machining. in Proceedings of the
International research in production engineering.
1963. Pittsburgh.

7.3 Books and Thesis

[9] Huyanan, S., An Active Vibration Absorber
for Chatter Reduction in Machining, Ph.D.
Thesis in  Mechanical Engineering 2007,
University of Sheffield: Sheffield.

[10] Juang, J.-N. and M. Pan, Identification and
Control of Mechanical Systems, ed. 12001,
Cambridge, ISBN: 9780521783552, Cambridge
University Press.





