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Abstract 

Milling is one of the most versatile metal removal processes in which a rotating cutter removes 

material of a workpiece. One of limit factors on achieving higher productivity is regenerative chatter 
arose in cutting processes. Chatter is an unstable cutting condition with excessive vibrations, which leads 

to a poor surface finish, tool wear and potential damage to the machine or tool. Stability of conventional 

milling processes are widely studied in the pass decades. Recently, the topic of variable pitch and variable 
helix milling tools has gained attention as an alternative method to improve stability boundary of the 

milling processes by altering chatter pattern using irregular setting of a milling cutter. This study presents 

the application of semi-discretization method on stability analysis of variable pitch and variable helix 

milling tools.  

Keywords: Milling, Chatter, Semi-discretization, Variable helix and pitch, Variable time delay.  

 

1. Introduction 

Variable pitch and helix milling tools have 

been studied by recent researches [1-2, 7] as an 
alternative mean for improving chatter stability. 

Fig.1 schematically shows a variable pitch and 

helix milling tool. It can be seen that each axial 
layer or disk of the tool can have different angles 

between one tooth and the next. This provides the 

possibility to avoid chatter occurred by judicious 
choice of the tool pitch and helix angles. The first 

analytical method on irregular tooth pitch cutter 

was introduced by Slavicek [7] as an alternative 

passive method to improve the stability condition 

in the milling process, using Tlusty’s orthogonal 

cutting chatter theory [8]. Altintas et al [2] 
extended their so-called single solution method to 

predict the stability in variable pitch cutter. Up to 

date, a few studies were proposed to investigate 
the effect of higher order harmonics of the cutting 

forces on stability in such variable pitch cutter. 

However, in the recent publication, Turner et al 

[1] described the use of different helix angles on 

an end-mill to improve stability condition, and 

stability was predicted using an average helix 

angle along an axial depth of cut based on the 

extended method of single frequency solution. 

There have been little or no reports of 

stability models for these classes of milling tool 
with interrupt cutting at low radial immersion. It 

transpires that this stability problem is well suited 

to the semi-discretization method developed by 
Insperger et al [3-5], which will be extended in 

this study. This paper will describe the theoretical 

basic and presents the extended analytic on 

stability of variable pitch and helix milling tools.  
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Fig. 1 Variable pitch and helix milling tool. 

 

2. Mechanistic model of cutting forces 

The linear orthogonal cutting forces model 

for the milling process is developed based on an 

end-mill cutter with a diameter of D , zN  flutes 

and a constant tooth angle ψ , as shown in Fig.2. 

The tool is rotated at spindle speed of ΩN  

revolution per minute (RPM) and the angular 

position of the tool is described by )(tθ . At each 

revolution, the static cutting zone is defined 

between the entry cutting angle enθ  and the exit 

cutting angle exθ . The axial depth of cut Z is 

divided into a differential thickness z∆  with kN  

stacks such that kNzZ ⋅∆= . 

The cutting force components, XF  and YF , 

acting on the tool can be described by [9], 
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Fig.2 Dynamic model of a milling system 
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                         *Note: θθ sin=s  and θθ cos=c  

 

Where j  refers to the flute number and k  

denotes index of the infinitesimal disk at axial 

height z , as shown in Fig.1. tK  and rK  are the 

specific tangential and radial cutting force 

coefficients, respectively. ( )tkj ,W  defines the 

directional oriented coefficient matrix, which is 
periodic at tooth passing frequency for the cutter 

with regular pitch angle, but at spindle frequency 

for the cutter with variable pitch angle.  

Next, the cutting force model is extended to 

include the effect of different helix angle on each  

flute j  of the end-mill. This can be achieved by 

introducing the instantaneous angular position 

( )tkj ,θ  of flute j  at axial height z  as follows,  

 

      ( ) ( ) z
D

tt
j

jj,k ⋅−−=
γ

ψθθ
tan2

0
           (3) 

 

where jψ  defines the relative angle between 

the first and thj -flutes. jγ  defines the constant 

helix angle on flute j . ( )t0θ  is the based angular 

position of the spindle rotation ΩN  at time t , 

determined by ( ) tNt ⋅= Ω0θ  (rad). The cutter is 

assumed to have a different constant helix angle 

on each flute, thes the pitch angle kj ,φ  of flute j  

at axial height z  is related to the relative angle 

jψ  of flute j  and 1−j  as follows, 
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Then, the time delay kj ,τ  of flute j  at axial 

height z  can be resolved as a function of the 

pitch angle kj ,φ  and the spindle speed ΩN  RPM 

as the form, 
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It can be seen that, by setting the variable 

pitch and helix angle on the cutter, the constant 

time delay of the conventional milling processes 

will be altered. The system becomes the variable 

time delay system in comparison to the constant 

time delay system of the uniform pitch cutter.  

Note that, using the different pitch angle kj ,φ  

will result in a non-constant uncut chip thickness  

jtf ,  for each flute of the cutter. Then, Substitute 

Eq. (3) into the cutting forces model (Eqs. (1) and 

(2)) yields the total cutting forces over the axial 
depth of cut Z as follows, 
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where ( ) Ttt yx ∆∆ , is a relative displacement 

vector of flute j  at height z of the tool-workpiece 

system and ( )Tktt jkj
yx ,,

, ττ −− ∆∆  refers to a state 

vector at time delay kj ,τ . Then, defines the static 

cutting force due to the uncut chip thickness jtf ,  

at time t  of flute j  as ( )TSYSX FF , , Eq. (6) can 

be re-written in a compact form and as, 
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( )tkj ,W  describes the directional oriented 

coefficient matrix, which is a time-periodic at the 

spindle rotation frequency for the case of 

irregular pitch cutters. However, if the cutter has 

the uniform pitch angle, then kj ,τ  will reduce into 

a constant time delay τ . Hence, ( )tkj ,W  becomes 

a periodic at the tooth passing frequency. 

Then, the continuous cutting force of Eq. (7) 

is discretizated by dividing the axial depth of cut 

Z  into kN  elements of a finite axial disk of 

thickness z∆ , such that zNZ k ∆⋅= . This results 

in the discrete cutting force model as, 
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The corresponding variable time delay  kj ,τ  

of the finite axial disk of element k  at flute j  

can be determined by, 
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if the case of a variable pitch end-mill is 

considered, then 1−= jj γγ . Thus, kj ,φ  becomes 

1−−= jjj ψψφ  and jkj ττ =, . In representing the 

cutting forces with the discrete form of Eq. (9), 

itis now applicable to apply the method of semi-

discretization to analyze stability problem of the 

cutting system with variable time delay. 

 

3. Stability analysis in milling with  

variable time delay 

Considering the dynamics of the milling 

process, the first order state equation of the 

milling system can be expressed as [9], 
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where q is the state vector, which defines the 

decoupled modal coordinates of the system. Â , 

B̂  and Ĉ  are a modal parameters matrix of the 

dynamic cutting system, which can be determined 

using the method of modal testing and analysis 

techniques. Since the modal parameters of the 

system are constant, thus B̂  is a constant matrix 

that can be distributed into the summation and 

rewritten Eq. (11) as, 
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At the instantaneous time t , the state vector 

jt τ−q  is dependent on flute j  and height z  of the 

finite axial disk element as oppose to the state 

vector  tq , thus only the state vector tq  can be 

taken off the summation. Then, decoupling the 

state vector ( ) Ttt yx ∆∆ , of Eq. (12) yields, 
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Since ( )tkj ,W  is periodic at the spindle 

rotation RPM ΩN , the principle period is 

Ω= NT 60 . The time period T  is divided into 

p  equal intervals with length t∆  as shown by 

the discretization scheme of Fig.3 such that,   
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For ],[ 1+∈ jj ttt and applying the method of 

single frequency solution, then kji ,,W  becomes 

an average coefficient over the period T  and 

defined by a constant kj ,,0W  as, 
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If the method of convolution integral is 

adapted, then kji ,,W  is held constant over the th
i  

interval with length t∆  such that, 
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Fig.3 Discretization scheme 

Discretization of the delayed term yields the 

approximated delayed states as, 
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The delayed index kjm ,  is defined by 

relationship between t∆  and the delay kj ,τ  as, 
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where the weights of 
kjmi ,−q and 1, +− kjmiq  are 

given by,  
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Substitution of Eqs. (15)-(17) into Eq. (13) 

over each time interval i  of ],[ 1+∈ jj ttt , where 

( )
itit qq = . Thus, Eq. (13) can be approximated 

as, 
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Since iA and iB  are constant coefficients for 

[ ]1, +∈ iii ttt , the system of Eq. (13) is linearized 

by the approximating system of Eq. (20) for 

[ ]1, +∈ iii ttt , then the principle of superposition 

exists. The solution of Eq. (20) for the initial 

condition ( ) iit qq =  reads, 
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For time 1+= itt , this gives ( ) 1+= it qq  and 

the state 1+iq  is given by, 
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Since the system of Eq. (13) is variable time 

delay such that kjm ,  is not constant, then the 

finite dimension of the discrete map is determined 

by the integer maxm . If Eq. (13) represents the 

milling system using the n -dimensional state 

vector, then the approximated ( )2max +mn -

dimensional state vector is defined by, 
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and the discrete map can be constructed as, 
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where each ( )2max +mn -dimensional transition 

matrix iΦ  is given by, 
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In the case of single frequency approximation, 

Eq. (25) becomes the delayed transition matrix 

TΦ  since TΦ  is constant over all discretization 

intervals. Alternatively, for applying the method 
of convolution integral, the delayed Floquet 

transition matrix TΦ  can be obtained by 

convolution of Eq. (25) over the principle period  

T  for 1,,1,0 −= ki K , as follows 

 

     
0121 ΦΦΦΦΦ ⋅⋅= −− LkkT

      (26) 

The ( ) ( )22 maxmax +×+ mnmn -dimensional 

matrix TΦ  represents an approximation of the 

infinite dimensional solution of Eq. (13), and the 

eigenvalues of TΦ  can be used to evaluate 

stability of Eq. (13). If all eigenvalues of TΦ  are 

within the unit circle, then the system is 
asymptotically stable. If one of the eigenvalues of 

TΦ  is on the unit circle while the rest are within 

the unit circle, then the system becomes critically 

stable. Otherwise, if one of the eigenvalues of 

TΦ  is outside the unit circle, then the system is 

unstable and thus chatter occurs.  

 

4. Corresponding chatter frequencies  

Since stability analysis of Eq. (13) is based 

on the approximated discrete-time system, it is 

known that the eigenvalues of the corresponding 
discrete-time system can be transformed to the 

eigenvalues of the corresponding continuous-time 

system [10]. Hence, if ϕ  defines the eigenvalues 

of the approximated discrete-time system of Eq. 

(13), then the corresponding eigenvalues λ  of 

the continuous system can be obtained by, 

         ii
i

i j
T

φ
ωσλ ±==

ln
         (27) 

 

where T  denotes a sampling period of the 

discrete time system, which refers to the principle 
period at the spindle rotation in this case.  

It is clearly seen that frequencies of the 

system vibrations can be determined according to 

imaginary part of the eigenvalues λ . However, it 

is important to note that the transformation from 
the discrete-time system into the continuous-time 

system is not unique. This results in accumulation 

of multipliers of π2  to imaginary part of λ  [10]. 

This allows the corresponding vibration 

frequencies 
corrf  to be determined as follows, 
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KK  1, 0, 1, ,where −=l

 

If one of ( ) σλ =iRe  of Eq. (27) is zero, the 

system becomes critically stable. This results in 

pure oscillation of the system at corresponding 

frequency determined from ( ) ωλ =Im . Since the 

principle period is larger than the maximum 

delayed period, three types of instabilities of 
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periodic solutions associated to chatter can 

possibly occur; a Secondary Hopf-bifurcation, a 
Period-doubling bifurcation and a Period-one 

bifurcation. Its corresponding chatter frequencies 

are listed in Table. 1 [9].  
 

Table. 1 Corresponding chatter frequencies 

Type of bifurcation 
Correspondent chatter 

frequencies 

Secondary Hopf Hz 
602

Ω+±
N
li

π
ω

 

Period-doubling Hz
602

1 Ω






 +
N

l

 

Period-one Hz 
60

0 Ω+
N
l

 
 

5. Stability prediction, case studies 

The proposed semi-discretization method for 
the milling process with variable time delay has 

been evaluated by reconsidering the stability in 

milling with a variable pitch cutter. Altintas et al 

[2] presented both numerical and experimental 

data on the stability analysis of a milling process 

with variable pitch cutters. This was based on the 

method of modified single frequency solution, 

where the evaluation of stability was performed 

by scanning all possible chatter frequencies and 
chatter vibration wavelengths.  

In [2], the case of a variable pitch milling was 

investigated using a 2-directional milling system 

with the dynamics parameters listed in Table. 2. 

The tool parameters used in the study were: a 4-

flutes cutter having diameter 19.05 mm with 

variable pitch angle of °−°−°−° 1107011070  and 

helix angle of °30 . Cutting tests were conducted 

on Al-7075 specimens at feed rate 0.0508 

mm/tooth with the specific cutting coefficients: 
26 N/m 10697×=tK  and 367.0=rK . 

 

Table. 2 Dynamic parameters of the milling cutter 

Direction Mode [Hz] nω  
[%] ζ  Residue 

x 

1st 

2
nd
 

3rd 

443.62 

563.55 

778.52 

2.86 

5.58 

5.90 

0.08989 

0.6673 

0.07655 

y 1
st
 516.27 2.50 0.834 

 

To apply the semi-discretization method in 

this study, first, the first-order state equation 

describing the 2-directional milling system was 
constructed and then substituted into Eq. (13). 

Since the varying pitch angle on the cutter is 

repeated for every 2-flutes, ( )tkj,W  is a periodic 

function with the principle period T  at the rate of 

half the spindle speed  ΩN  , thus  ( )2/60 Ω= NT . 

Then, discretization of T  into p  intervals, such 

that tpT ∆⋅= . In this study, discretization of the 

principle period was chosen for 50=p  in order 

to preserve computational time. The delayed 

Floquet transition matrix TΦ  is then numerically 

evaluated over specific range of spindle speeds 

and depths of cut using the Matlab programming. 
The analysis was done on both the methods of 

single frequency approximation (doted-line) and 

the convolution integral method (solid-line), as 
shown in Fig. 4. 

For a variable pitch cutter with constant helix 

angle, the time delay can be determined by the 
angle between two subsequence teeth. The 

varying delay for given spindle speed is defined 

by [ ] ( )Ω×°°−°−°−°× N360/110701107060 seconds, 

which results in the DDE system with two 

constant time delays. The approximated delayed 
terms can be obtained using Eqs. (18) and (19) 

where the maximum delay index describes a 

finite dimension of the approximated discrete 

delayed system. Then, the local stability for the 

given axial depth of cut Z  can be determined by 
evaluation of the eigenvalues of the constructed 

delayed transition matrix Φ  as defined by Eqs. 
(21)-(26). Finally, the stability charts are obtained 

by iterating the stability analysis over a set of 

spindle speeds and axial depths of cut.  

The stability charts for the variable pitch 

cutter are presented for half immersion operations 

as shown in Fig.4(a) for the stability results 

obtained using the extended method of single 

frequency solution and Fig.4(b) for the semi-

discretization method. In the frequency diagram, 
dash-doted lines denote harmonics of the 

principle period of the system and the dashed 

lines denote the structural natural frequency. It 

can be seen that both the stability charts predict 

almost the same stability results apart from the 

unstable period-one and period-doubling 

bifurcations presented in the semi-discretization 

method. The boundary of these unstable period-

one and period-doubling types are not significant 

since only small part of the stability region are cut 
off. It can be seen in the frequency diagram that 

the unstable period-one bifurcation is expected if 

the corresponding chatter frequencies cross 
harmonics of the principle period while the 

unstable period-doubling bifurcation occurs if the 

corresponding chatter frequencies intersect each 

other. However, the routes of instability for the 

unstable period doubling are separated quickly 

after it passes through -1 on the real axis.  
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Fig.4 Stability charts for the variable pitch end-mill 



                The 26th Conference of the Mechanical Engineering Network of Thailand  

               October 2012, Chiang Rai 
 

  

Paper ID 

AMM 2032 S 

 

 

0

100

200

300

400

500

600

700

C
h
a
tt
e
r 

fr
e
q
u
e
n
c
ie

s
 (

H
z
)

(a) Full radial immersion, down−milling (b) 50% radial immersion, down−milling

0

2

4

6

8

A
x
ia

l 
d
e
p
th

 o
f 
c
u
t 
(m

m
)

0

100

200

300

400

500

600

700

C
h
a
tt
e
r 

fr
e
q
u
e
n
c
ie

s
 (

H
z
)

(c) 25% radial immersion, down−milling (d) 10% radial immersion, down−milling

2500 5000 7500 10000 12500
0

2

4

6

8

10

12

A
x
ia

l 
d

e
p

th
 o

f 
c
u

t 
(m

m
)

Spindle speed (RPM)

2500 5000 7500 10000 12500

Spindle speed (RPM)  
Fig.5 Stability charts for the variable pitch end mill at different radial immersions 



                The 26th Conference of the Mechanical Engineering Network of Thailand  

               October 2012, Chiang Rai 
 

  

Paper ID 

AMM 2032 S 

 

 

0

100

200

300

400

500

600

700

800

900

1000

C
h
a
tt
e
r 

fr
e
q
u
e
n
c
ie

s
 (

H
z
)

(a) Regular pitch, VH [40−30−40−30] (b) VP [70−110−70−110] VH [40−30−40−30]

0

2

4

6

8

10

12

A
x
ia

l 
d

e
p

th
 o

f 
c
u

t 
(m

m
)

0

100

200

300

400

500

600

700

800

900

1000

C
h
a
tt
e
r 

fr
e
q
u
e
n
c
ie

s
 (

H
z
)

(c) VP [70−110−70−110] VH [35−40−35−40] (d) VP [70−110−70−110] VH [40−35−40−35]

2500 5000 7500 10000 12500
0

2

4

6

8

10

12

A
x
ia

l 
d
e
p
th

 o
f 
c
u
t 
(m

m
)

Spindle speed (RPM)

2500 5000 7500 10000 12500

Spindle speed (RPM)

Variable helix
Constant helix

Variable helix
Constant helix

Variable helix
Constant helix

Variable helix
Constant helix

 
Fig.6 charts for the end mill with varying pitch and helix angles 



                The 26th Conference of the Mechanical Engineering Network of Thailand  

               October 2012, Chiang Rai 
 

  

Paper ID 

AMM 2032 S 

It can be seen that all the three types of 

instability occur which can be illustrated by the 
characteristic multipliers pass through the unit 

circle in the complex plane. These routes to 

instabilities are illustrated in the bottom graphs 
of Fig.4(b) with the corresponding spindle speed 

and axial depths of cut shown in the stability 

chart. It can be noticed that an abrupt jump of 

the characteristic multipliers occurs on all types 

of instability. This type of eigenvalue 

discontinuity can be attributed to the fact that the 

delayed transition matrix Φ  is asymmetric [6] 

due to the effect of two constants time delay of 

the system. It can be seen from the frequency 

diagram that the spindle speed that pass through 

or locate in the vicinity of the chatter frequency 
lines should be avoid in milling with this cutter 

since large amplitude vibration may occur due to 

the unstable period-one bifurcation. 
Fig.5 presents comparison of the stability 

charts at different radial immersions. These 

stability charts were constructed to investigate if 
the effect of the unstable period-one and period-

doubling will be significant on low immersion 

cutting with the variable pitch cutter. It can be 

seen that the method of extended single 

frequency solution can provide almost identical 

stability results to the convolution integration 

method, except unstable period-one and period-

doubling bifurcation as mentioned above. This 

suggests that the single frequency solution 

method is effective to predict the stability 

boundary. 

Next, the analysis was applied to investigate 

the problem of the cutter with variable helix 

angles using the similar set of the structural 

dynamic parameters. First, the stability chart for 

the cutter with regular pitch angle and varying 

helix angle of [ ]30403040 −−−  was 

determined with the semi-discretization method 

and compared to that of the standard cutter 

(dotted line) as shown in Fig.6(a). It can be seen 

that different helix angle on each cutter tooth has 

significantly no effect on the stability limit but it 

tends to re-locate the stable pocket region. Then, 
the stability charts for the variable pitch end mill 

with three different sets of varying helix angles 

are shown in Fig.6(b) for a varying helix angles 

of [ ]30403040 −−− , Fig.6 (c) for a varying 

helix angles of [ ]35403540 −−−  and Fig.6(d) 

for a varying helix angles of [ ]40354035 −−− . 

Again, the analytical stability prediction of the 

cutter with variable helix angle indicated no 

difference on the limited axial depth of cut in 

comparison to one obtained from the variable 

helix cutter (dotted line) and the effect of 
varying time delay due to varying helix angle 

can be observed in the stable pocket region. 

Result of particular interest is that the spindle 
speeds where the unstable period-one and 

period-doubling occurred remain unchanged for 

all of the sets of varying helix angles. 

It is worth discussing that on varying helix 

angles, one of the limit factors in implementing 

different helix angle on each flute is the cutter 

geometry. Since two subsequent teeth are not 

parallel, this results in the intersection of two 

subsequent flutes at a axial position lZ . Thus, 

flute length of the cutter becomes shorter and 
constricts the chip exit. This can be presented by 

a simple trigonometric calculation to obtain the 

maximum flute length on the cutter with two 

different helix angles. If two subsequent flutes 

j  and 1−j  were set with different helix angle 

as defined by 
j

γ  and 1−jγ , respectively. For 

1−> jj γγ , the maximum flute length jlh ,  of 

flute j  for a cutter of a diameter D  can be 

obtained using the following formula, 

        

( )
1

,
tantan2 −−

⋅
=

jj

j

jl

D
h

γγ

φ

  
where jφ  is the angle between flutes j  and 

1−j . For a 19.05 mm standard 4-flutes end 

mill with helix angles of °40  and °30 , the 

maximum flute length is 57.16 mm. Thus, the 

effective flute length can be shorter than the 

maximum length by a factor of 2. 

 

5. Summary 

It has been showed in this paper that the 

semi-discretization method is capable of 
evaluating the stability in the milling process 

with variable time delays. First, the stability 

problem for variable pitch end milling 
operations was demonstrated. The stability 

results from two approximations of the time-

periodic coefficients show almost no difference 

in the stability boundary apart from that the 

unstable period-one and period-doubling 

behaviour can occur on the stability boundary 

using the convolution integral method. Then, the 
example analysis on various types of end mill 

was carried out. The results indicated that 

varying helix angles has no effect on the limited 

axial depth of cut but tends to change the 

boundary curves.  
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One of the major disadvantages using the 

convolution integral method is the 
computational time to generate the stability 

charts is tremendous. However, such this study 

on stability of milling processes with varying 
time delay is a non-linear analysis, thus the 

computational time consumed were not the main 

focus. It has been observed that in most cases, 

the single frequency solution approximation 

with discretization of the delayed terms can 

predict similar stability results to that of the 

convolution integral method, except the cases 

concern unstable period-one and period-

doubling bifurcation. Hence, the method of 
single frequency approximation of time-periodic 

coefficients is suggested if the computational 

time is a major factor.  
Considering the tool geometry in this study, 

varying helix angles shown little effect in 

comparison with varying pitch angles. However, 

further work is recommended to investigate the 

performance for different types of milling cutter 

geometries. One of limit factors on 

implementing a cutter with varying helix angles 

is the cutter geometry. The large difference 

between two helix angles setup can result in a 
shorter flute length, especially on a small 

diameter end mill. 
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