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Abstract 
 Dissimilar materials are frequently used in industrial products, such as electronic devices.  Many 
investigations on two-dimensional joints so far have been carried out theoretically and experimentally.  In 
this paper, the order of stress singularity at the vertex in three-dimensional bonded joints is investigated. 
The contour map of the order of stress singularity in a form of power-law singularity on the Dundurs’ 
composite plane in plane strain condition is presented. It is shown that the order of stress singularities at 
the vertex in three-dimensional bonded joints is different from that in two-dimensional bonded joints with 
various combinations of material properties.   
Keywords: Order of stress singularity, Dundurs’ parameters, Bonded joints. 
 

1. Introduction 
 Consider a bimaterial that consists of two 
dissimilar homogeneous isotropic material bonded 
together along their interface.  There are two 
elastic constants each in the two materials, 
resulting in a total four elastic constants.  
Dundurs [1-3] has proved that the solution of the 
stress depends on two composite elastic 
constants (known as Dundurs constants). Many 
investigations have been conducted so far 
concerning joints fabricated from materials with 
different properties, in order to effectively utilize 
the feature of each material.  Joint structures of 
bonded metals and ceramics have been used 
widely in electric devices and mechanical parts.  
It is known from previous studies that failure 

occurs and the reliability of the materials 
decreases due to the occurrence of stress 
singularity at the cross-point of the free surface 
and the bonded plane (Fig.1).  Fracture and 
delamination occur often around the vertex of 
joints.  Such problems cause the decrease of 
reliability of joints.   

 
 

Fig. 1 Stress singularity at vertex point. 
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Therefore, many studies on the reduction of 
stress singularity have been carried out 
theoretically and experimentally [4].  Almost all 
these studies are focused on two-dimensional 
stress singularity [5-8].  In a practical point of 
view of fracture mechanics and application of 
joints, an analysis of three-dimensional 
singularities would be useful. 
 

                 
 

Fig. 2 Vertex point in three-dimensional bonded 
joints. 

There are several investigations on the stress 
singularity field in three-dimensional elastic 
materials. Bazant [19] first developed a general 
numerical procedure for determining three-
dimensional stress singularities.  Benthem [11-12] 
examined the singularity exponent of the stress 
field at the corner point of the free surface with a 
crack front in a three-dimensional crack.  
Ghahremani et al. [13] analyzed the elastic 
anisotropy-induced stress concentrations at triple 
junctions in three dimensions, and showed that 
the concentration effect in three-dimensions to be  
 

stronger than those obtained for plane strain 
configurations. When we estimate the strength 
and reliability of joints, we have to know the order 
of stress singularity and stress distribution. Then 
stress intensity factors at the vertex of the joint 
can be calculated using interpolation method.  
Furthermore, when the order of stress singularity 
is arranged on Dundur’s parameters plane, it is 
very useful for various combinations of materials. 
In this present study, the order of stress 
singularity at the vertex in three-dimensional 
bonded joints is investigated and then plotted on 
Dundur’s parameter plane.  Graphed results on 
the planes of Dundur’s parameters for a two-
dimensional stress state and those for a three-
dimensional are compared.  

2. Method and Model of analysis 
 Dundurs introduced the well-known 
parameters, α β− , utilizing a description of a 
stress state in dissimilar materials.  The 
parameters can be expressed using pairs of 
material properties ( ),G ν   
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 in which G is the shear modulus and ν is 
Poisson’s ratio.  The subscripts of these material 
properties represent the region of materials.  
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 Since the 
mechanical properties for all materials are in the 
range of 1 2, 0G G ≥ , 1 20 , 0.5ν ν≤ ≤ ,  
 
the existence domain of α β−  is within the 
boundary enclosed by four straight lines as 
follows 

1α = ±                                                     (5) 
1  for plane strain
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3 1  for plane stress
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FEM formulation using an interpolation function of 
displacements, considering the stress singularity 
presented by Yamada and Okumura [17] and 
Pageau and Biggers [14] is used to analyze the 
order of stress singularity.  We can obtain 
multiple real as eigen values for the eigen 
equation of the displacement vector, and examine 
the order of stress singularity.  In previous studies, 
we found that number of integration points is 20 
and the mesh size should be less than 10ox10o 

that the convergence rating and the time 
consumption for calculation are optimum as 
shown in Fig 3.   

     
Fig. 3 Mesh model for FEM eigen analysis. 

 
Many combinations of materials yielding the same 
value of Dundur’s parameters generally exist. 
Hence, Young’s modulus and Poisson’s ratio, 1E  
and 1ν  of material 1 are fixed, then 2E  and 2ν  
of material 2 are determined for the given 
Dundur’s parameters α β− , by 
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Here, the Dundur’s parameters are employed to 
compare the contour map of the order of stress 
singularity for two-dimensional joints and three-
dimensional joints. 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Dundur’s parameter plane. 
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3. Results and Discussion 

The results in 3D joints are compared 
with those in 2D joints of the same cross section 
plane of 3D joints in the same material 
combination. The order of stress singularity in 2D 
joints is determined by using FEM eigen method.  
Afterwards, the contour map of the order of stress 
singularity on Dundur’s composite plane is shown 
in Fig. 6 for the vertex point in 3D joints and for 
the apex in 2D joints.  The zero boundary of 
singularity in 2D joints is presented by two lines, 

0α = and / 2β α= .  In this study, the loci of 
the root of characteristic equations for the order 
of stress singularity are investigated by varying 
the value of α in the range 2 1.0β α≤ ≤ while 
holding β at the fixed value.  In Table 1, the 
eigen value p for β  being 0.1 is investigated 
precisely of various values of α from 0.2 to 1.0 
by the three-dimensional FEM eigen analysis.  
The order of stress singularity ( )1pλ = −  for 

power-law singularity can be obtained directly as 
shown in Fig. 5.  The same procedure is also 
used for various values of the Dundur’s 
parameter β . 
Table. 1 Eigen value p as 0.1β =  

       

β=0.1
α

3D eigen FEM 2D eigen FEM
0.20 0.997093679 0.999212353
0.30 0.966312813 0.976054311
0.40 0.923317231 0.940251359
0.46 0.893478412 0.914796675
0.50 0.872330690 0.896616715
0.58 0.827632741 0.858036609
0.64 0.792357352 0.827575115
0.70 0.755764819 0.796062050
0.76 0.717924396 0.763622173
0.84 0.665492066 0.719002280
0.96 0.582069138 0.648962801
0.98 0.567511901 0.636877821

p value

 
 

 

 
Fig. 5 The order of stress singularity as 0.1β = . 

It can be seen that the order of stress 
singularities at the vertex point in three-
dimensional bonded joins are larger than those 
for two-dimensional bonded joints.   
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5. Conclusions 
The order of stress singularity in a form 

of power-law singularity at the point on the stress 
singularity lines in three-dimensional bonded 
joints were investigated using the FEM eigen 
analysis.  The contour map of the order of stress 
singularity in a form of power-law singularity for 
the vertex point in three-dimensional bonded 
joints were plotted on an ordinary Dundurs’ 
composite plane 2 2D Dα β−  in plane strain 
condition.  It can be seen that the order of stress 
singularity around the singular point on the stress 
singularity line in three-dimensional bonded joints 
was larger than that at the apex in 2D bonded 
joints.
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         Fig. 6 The order of stress singularity on the Dundur’s parameter plane α β−  for the vertex point 

in three-dimensional bonded joints.
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