

้วิธีซอร์สและวอร์เท็กพาเนลสำหรับการไหลศักย์อัดตัวไม่ได้ผ่านวัตถุ 2 มิติ

Source-and-Vortex Panel Method for Incompressible Potential Flow over 2D Object

กิจจา ภัทรทิพากร, ณัฐวุฒิ ม่วงศรีจันทร์, ณัฐวุฒิ วิทยานุกรณ์, วีระชาติ ไทยเสถียร, ธนกฤต กิจแสงภักดี, นฤรงค์ โตอัจฉริยะวงศ์ และวรเชษฐ์ ภิรมย์ภักดิ์*

ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยบูรพา ตำบลแสนสุข อำเภอเมือง จังหวัดชลบุรี 20131 *ติดต่อ: worapiro@eng.buu.ac.th, โทรศัพท์: 038 102222 ต่อ 3385

าเทคัดย่อ

้งานวิจัยนี้ เป็นการศึกษาเชิงทฤษฎีเกี่ยวกับการวิเคราะห์ความเร็วและความดันที่ผิวของวัตถุเชิง 2 มิติ ้จากการใหลผ่านของของไหล โดยอาศัยวิธีซอร์สและวอร์เท็กพาเนล ซอร์สเป็นรูปแบบการไหลมาตรฐานสำหรับ การไหลภายนอกซึ่งมีลักษณะการไหลออกจากจุดหนึ่ง ในขณะที่วอร์เท็กเป็นรูปแบบการไหลมาตรฐานที่มีลักษณะ การใหลวนรอบจุดหนึ่ง เมื่อนำซอร์สและวอร์เท็กมารวมกันเป็นพาเนลก็จะได้ลักษณะการไหลออกจากพาเนลนั้น ้นอกจากนี้ เมื่อนำซอร์สและวอร์เท็กพาเนลรวมกับรูปแบบการไหลแบบยูนิฟอร์ม จะทำให้เกิดลักษณะการไหลที่ ้เหมือนกับการใหลของของใหลผ่านวัตถุต่างๆ จากผลการศึกษา การประยุกต์ใช้วิธีซอร์สและวอร์เท็กพาเนลกับ การใหลของอากาศผ่านแพนอากาศ NACA 0015, NACA 64-212 และ NACA 63-415 จะพบว่า ผลลัพธ์ที่ได้ มีแนวโน้มไปในทิศทางเดียวกันกับผลลัพธ์จากวารสารงานวิจัยในอดีต

คำหลัก: ซอร์ส, วอร์เท็ก, วิธีซอร์สและวอร์เท็ก, แพนอากาศ

Abstract

This research presents a theoretical study of source-and-vortex panel method for incompressible potential flows over two-dimensional bodies. The source and vortex is a standard flow model for the external flow. The source is the flow from one point and the vortex is the rotating flow. When the source and vortex are integrated to a panel and are combined with the standard flow pattern of uniform, this can simulate the potential flow over two-dimensional body. From the results of NACA 0015, NACA 64-212 and NACA 63-415, the trend lines of dimensionless of velocity and pressure agree well with the results from published literatures.

Keywords: Airfoil, Source, Source-and-Vortex Panel Method, Vortex

1. บทน้ำ

การใหลแบบโพเทนเชียล 2 มิติ เป็นลักษณะ การไหลพื้นฐานที่สามารถใช้จำลองการไหลของ ของใหลผ่านวัตถุต่างๆ ได้เป็นอย่างดี สมการที่ใช้ อธิบายลักษณะการใหลดังกล่าว จะอยู่ในรูปของ สมการอนุพันธ์ ซึ่งสามารถใช้วิธีบาวน์ดารีเอลิเมนต์ใน

การหาคำตอบได้ ในทางวิศวกรรม จะพิจารณาคำตอบ ที่ได้จากสมการอนุพันธ์ให้อยู่ในรูปแบบการไหล มาตรฐานต่างๆ เช่น การใหลแบบสม่ำเสมอ (Uniform flow), การไหลแบบซอร์ส (Source Flow), การใหลแบบวอร์เท็ก (Vortex flow), การไหล แบบสม่ำเสมอรวมกับการใหลแบบซอร์ส (Uniform

flow plus a source) และการใหลแบบสม่ำเสมอ รวมกับการไหลแบบวอร์เท็ก (Uniform flow plus a vortex) และการไหลแบบสม่ำเสมอรวมกับการไหล แบบซอร์สและวอร์เท็ก (Uniform flow plus a sourceand-vortex) จากการสืบคันข้อมูลงานวิจัยในอดีต จนถึงป[ั]จจุบัน พบว่า มีนักวิจัยหลายกลุ่ม [1-5] ที่ได้ ศึกษาและพัฒนาแบบจำลองทางคณิตศาสตร์บน พื้นฐานของวิธีพาเนล โดยมีทั้งแบบจำลองสำหรับวัตถุ 2 มิติ และ 3 มิติ โดยมีเทคนิคในการใช้งานต่างกันไป สำหรับวิธีซอร์สและวอร์เท็กนั้น ส่วนใหญ่จะกำหนด สมการของซอร์สและวอร์เท็กให้อยู่รวมกัน แล้วกำหนดความแข็งแรงของวอร์เท็กทุกตำแหน่งให้มี ค่าเท่ากัน จากนั้นจึงอาศัยลักษณะการไหลผ่านปลาย วัตถุในการสร้างสมการช่วยอีกหนึ่งสมการ ก็จะ สามารถแก้สมการดังกล่าว เพื่อหาคำตอบได้

้ดังนั้น ในการศึกษานี้ ซึ่งเป็นโครงงานวิศวกรรม ของนิสิตในระดับปริญญาตรี จะเป็นการศึกษาเกี่ยวกับ อิทธิพลของซอร์สและวอร์เท็กที่มีต่อลักษณะการไหล ้ศักย์อัดตัวไม่ได้ผ่านวัตถุสองมิติ โดยอาศัยการแก้ สมการของซอร์สและวอร์เท็กที่เป็นอิสระต่อกัน จากนั้นจึงอาศัยทฤษฎีการทับซ้อนในการผลลัพธ์ที่ได้ ้จากซอร์สและวอร์เท็กเข้าด้วยกัน เพื่อให้ได้คำตอบที่ ต้องการ

2. ทฤษฎี

ในการพิจารณาการไหลศักย์อัดตัวไม่ได้ใน 2 มิติ จะเริ่มจากการพิจารณา รูปแบบการไหลพื้นฐานที่ได้ จากการแก้สมการอนุพันธ์โดยวิธีบาวดารีเอลิเมนต์ ซึ่ง จะประกอบไปด้วยลักษณะการไหล 3 รูปแบบ คือ สมการการไหลแบบสม่ำเสมอ, การไหลแบบซอร์ส และ การไหลแบบวอร์เท็ก ซึ่งแสดงดังต่อไปนี้

2.1 การไหลแบบสม่ำเสมอ

การไหลแบบสม่ำเสมอเป็นการไหลที่ความเร็ว ของของไหลในหน้าตัดเดียวกันจะคงที่เท่ากันหมด ซึ่ง จะมีสมการศักย์ของการไหล (Potential function) เป็นไปตามสมการที่ 1

$$\phi = -V_0 x$$

2.2 การไหลแบบซอร์ส

การใหลแบบซอร์สเป็นการใหลที่มีลักษณะ การใหลออกจากจุดใดจุดหนึ่งในแนวรัศมีทุกทิศทาง ดังแสดงในรูปที่ 1 ซึ่งจะมีสมการศักย์ของการไหล เป็นไปตามสมการที่ 2

$$\phi = \frac{q}{2\pi} \ln r \qquad \dots (2)$$

รูปที่ 1 การไหลแบบซอร์ส

2.3 การไหลแบบวอร์เท็ก

การไหลแบบวอร์เท็ก เป็นการไหลในลักษณะที่ ของไหลเคลื่อนที่เป็นวงกลมรอบจุดหนึ่ง ดังแสดงใน รูปที่ 2 ซึ่งจะมีสมการศักย์ของการไหลเป็นไปตาม สมการที่ 3

$$\phi = \frac{q}{2\pi}\theta \qquad \dots (3)$$

รูปที่ 2 การไหลแบบวอร์เท็กซ์

การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่งประเทศไทย ครั้งที่ 27

16-18 ตุลาคม 2556 พัทยา จังหวัดชลบุรี

จากรูปแบบการไหลพื้นฐานทั้ง 3 รูปแบบ ทำให้ สามารถจำลองลักษณะการไหลของของไหลผ่านวัตถุ 2 มิติ ได้ โดยการนำรูปแบบการไหลพื้นฐานดังกล่าว มารวมกัน และสร้างเป็นพาเนลตามลักษณะของวัตถุที่ ต้องการศึกษา

แบบจำลองทางคณิตศาสตร์

สำหรับแบบจำลองทางคณิตศาสตร์ที่จะศึกษานี้ จะเริ่มต้นจากวิธีซอร์สพาเนล (Source Panel) เป็น ลำดับแรก เพื่อนำไปสู่วิธีซอร์สและวอร์เท็กพาเนลใน ลำดับถัดไป

3.1 วิธีซอร์สพาเนล (Source Panel)

ซอร์สพาเนล ได้จากการนำซอร์สซึ่งมีลักษณะ การไหลเป็นไปดังสมการที่ 2 มาต่อกันเป็นพาเนล แล้วนำพาเนลที่ได้ มาประกอบกันเป็นวัตถุที่ต้องการ ซึ่งจะได้สมการดังต่อไปนี้

$$\phi(x_i, y_i) = \sum_{j=1}^{m} \frac{\lambda_j}{2\pi} \int \ln r_{ij} ds_j + V_{\infty} x \qquad \dots$$
(4)

เมื่อหาอนุพันธ์แยกส่วนของสมการที่ 4 เทียบกับ เวกเตอร์หนึ่งหน่วยที่ตั้งฉากกับแต่ละพาเนล ซึ่งเป็น ลักษณะเฉพาะของการไหลศักย์ จะได้

$$\sum_{j=1}^{m} I_{ij} \lambda'_{j} = -\cos \beta_{i} \qquad \dots (5)$$

ตัวอย่างเช่น การวิเคราะห์การไหลผ่านทรงกระบอก ซึ่งแบ่งพาเนลออกเป็น 8 พาเนล ดังรูปที่ 3

รูปที่ 3 การแบ่งพาเนลของทรงกระบอก

เมื่อกำหนด I ให้เป็นไปตามสมการที่ 6 ดังนี้

$$I_{ij} = \int_{a}^{b} \frac{\left(x_{i} - x_{j}\left(\frac{\partial x_{i}}{\partial n_{i}}\right) + \left(y_{i} - y_{j}\left(\frac{\partial y_{i}}{\partial n_{i}}\right)\right)}{\left(x_{i} - x_{j}\right)^{2} + \left(y_{i} - y_{j}\right)^{2}} ds_{j} \qquad \dots$$
(6)

จากสมการที่ 5 จะสร้างสมการเมทริกซ์ได้ดังนี้

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}	I_{17}	I_{18}	λ_1'	- cos 45°
I_{21}	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}	I_{27}	I 28	λ'_2	- cos 90°
I 31	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}	I_{37}	I 38	λ'_3	- cos 135°
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}	I_{47}	I ₄₈	λ_4'	- cos 180°
I_{51}	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}	I_{57}	I 58	λ_{5}'	– cos 225°
I_{61}	I_{62}	I_{63}	I_{64}	I_{65}	I_{66}	I_{67}	I 68	λ'_6	- cos 270°
I_{71}	I_{72}	I_{73}	I_{74}	I_{75}	I_{76}	I_{77}	I 78	λ'_7	- cos 315°
I ₈₁	I_{82}	I_{83}	I_{84}	I_{85}	I_{86}	I_{87}	I 88	λ_8'	– cos 360°

เพราะฉะนั้น จะสามารถแก้สมการที่ (5) เพื่อหาค่า \mathcal{X}'_j ได้ แล้วจึงหาความเร็วและความดันที่ตำแหน่งต่างๆ ดังต่อไปนี้

$$\frac{v_x}{v_{\infty}} = 1 + \lambda'_j \sum_{j=i}^{m} \int \frac{(x_i - x_j)}{j(x_i - x_j)^2 + (y_i - y_j)^2} ds_j \qquad \dots (7)$$

$$\frac{v_y}{v_{\infty}} = \lambda'_j \sum_{j=i}^{m} \int \frac{(y_i - y_j)}{j(x_i - x_j)^2 + (y_i - y_j)^2} ds_j \qquad \dots (8)$$

$$c_p = 1 - \left(\frac{v_x^2}{v_x^2} + \frac{v_y^2}{v_\infty^2}\right) \qquad \dots (9)$$

3.2 วิธีซอร์สและวอร์เท็กพาเนล

(Source-and-Vortex Panel)

ซอร์สและวอร์เท็กพาเนล จะเป็นการนำซอร์สและ วอร์เท็กมาต่อเป็นพาเนล ซึ่งจะได้สมการอินติเกรท ดังสมการที่ 10

$$\phi_i(x_i, y_i) = V_{\infty}x + \sum_{j=1}^m \frac{\lambda_j}{2\pi} \int \ln r_{ij} ds_j + \sum_{j=1}^m \frac{\gamma_j}{2\pi} \int \theta_{ij} ds_j \dots (10)$$

โดยอาศัยเงื่อนไขการไหลศักย์อัดตัวไม่ได้ผ่าน วัตถุ 2 มิติ จะสามารถหาอนุพันธ์ของสมการที่ (10) ได้ดังนี้

$$0 = V_{\infty} \cos \beta_i + \sum_{j=1}^m \frac{\lambda_j}{2\pi} \int \frac{\partial}{\partial n_i} \ln r_{ij} ds_j + \sum_{j=1}^m \frac{\gamma_j}{2\pi} \int \frac{\partial}{\partial n_i} \theta_{ij} ds_j \dots$$
(11)

โดยขั้นตอนต่อไปนี้ จะแบ่งการพิจารณาออกเป็น 2 ส่วน คือ ซอร์สพาเนล และ วอร์เท็กพาเนล ที่เป็น อิสระต่อกัน โดยในส่วนของซอร์สจะคิดเหมือนกับ หัวข้อ 3.1 แต่จะมีตัวแปร C ซึ่งเป็นค่าความแข็งแรง ของซอร์สเข้ามาเกี่ยวข้องด้วย ทำให้สมการที่ (5) ถูก เขียนใหม่ได้ดังนี้ การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่งประเทศไทย ครั้งที่ 27

TSF-2035

$$\sum_{j=1}^{m} I_{ij} \lambda'_{j} = -C \cos \beta_{i} \qquad \dots (12)$$

จากสมการที่ 12 จะสร้างสมการเมทริกซ์ได้ดังนี้

I_{11}	I_{12}	I_{13}	I_{14}	I_{15}	I_{16}	I_{17}	I_{18}	$\left[\lambda_{1}^{\prime}\right]$	$\left[-C\cos 45^\circ\right]$
I 21	I_{22}	I_{23}	I_{24}	I_{25}	I_{26}	I_{27}	I 28	λ'_2	$-C\cos 90^{\circ}$
I 31	I_{32}	I_{33}	I_{34}	I_{35}	I_{36}	I_{37}	I 38	λ'_3	$-C\cos 135^{\circ}$
I_{41}	I_{42}	I_{43}	I_{44}	I_{45}	I_{46}	I_{47}	I_{48}	$\left \lambda_{4}'\right _{-}$	$-C\cos 180^\circ$
I 51	I_{52}	I_{53}	I_{54}	I_{55}	I_{56}	I_{57}	I 58	λ_{5}^{\prime}	$-C\cos 225^{\circ}$
I 61	I_{62}	I_{63}	$I_{_{64}}$	I_{65}	$I_{_{66}}$	$I_{_{67}}$	I 68	λ_6'	$-C\cos 270^{\circ}$
I ₇₁	I_{72}	I_{73}	I_{74}	I_{75}	I_{76}	I_{77}	I ₇₈	λ_7'	$-C\cos 315^{\circ}$
I_{81}	I_{82}	I_{83}	$I_{_{84}}$	I_{85}	I_{86}	I_{87}	I_{88}	λ_8'	$\left\lfloor -C\cos 360^{\circ} \right\rfloor$

เพราะฉะนั้น จะสามารถหาค่า λ_i' ได้

ในส่วนของวอร์เท็ก ก็จะอาศัยค่า C ใน การคำนวณ ดังต่อไปนี้

$$\sum_{j=1}^{m} K_{ij} \gamma'_{j} = -(1-C) \cos \beta_{i} \qquad \dots (13)$$

โดยการพิจารณาการไหลผ่านทรงกระบอกใน รูปที่ 3 ก็จะสร้างสมการเมทริกซ์ได้ดังนี้

K_{11}	K_{12}	K_{13}	K_{14}	K_{15}	K_{16}	K_{17}	<i>K</i> ₁₈	$\left(\gamma_{1}^{\prime}\right)$		$-(1-C)\cos 45^\circ$
K21	K_{22}	K_{23}	K_{24}	K_{25}	K_{26}	K_{27}	K ₂₈	γ'_2	> =	$-(1-C)\cos 90^{\circ}$
K 31	K_{32}	K_{33}	K_{34}	K_{35}	K_{36}	K_{37}	K ₃₈	γ'_3		$-(1-C)\cos 135^{\circ}$
K ₄₁	K_{42}	K_{43}	K_{44}	K_{45}	K_{46}	K_{47}	K_{48}	γ'_4		$-(1-C)\cos 180^{\circ}$
K ₅₁	K_{52}	K_{53}	K_{54}	K_{55}	K_{56}	K_{57}	K_{58}]γ' ₅ [$-(1-C)\cos 225^{\circ}$
K ₆₁	K_{62}	K_{63}	K_{64}	K_{65}	K_{66}	K_{67}	K ₆₈	γ'_6		$-(1-C)\cos 270^{\circ}$
K ₇₁	K_{72}	K_{73}	K_{74}	K_{75}	K_{76}	K_{77}	K ₇₈	γ'_7		$-(1-C)\cos 315^\circ$
K ₈₁	K_{82}	<i>K</i> ₈₃	K_{84}	K_{85}	K_{86}	K_{87}	K	γ'_{s}		$-(1-C)\cos 360^{\circ}$

โดย K จะสามารถหาได้จากสมการที่ (14)

$$K_{ij} = \int_{a}^{b} \left[\frac{1}{\left(\frac{y_{i} - y_{j}}{x_{i} - x_{j}}\right)^{2} + 1} \right] \times \left[\frac{\left(\left(x_{i} - x_{j}\right) \frac{\partial y_{i}}{\partial n} \right) - \left(\left(y_{i} - y_{j}\right) \frac{\partial x_{i}}{\partial n} \right)}{\left(x_{i} - x_{j}\right)^{2}} \right] ds_{j} \dots (14)$$

เพราะฉะนั้น จะสามารถหา γ'_j ได้ และเมื่อได้ λ'_j และ γ'_jแล้ว ก็จะสามารถหาความเร็วและความ ดันที่ตำแหน่งต่าง ได้จากสมการต่อไปนี้

$$\frac{v_x}{v_{\infty}} = 1 + \lambda'_j \sum_{j=i}^m \int \frac{(x_i - x_j)}{j(x_i - x_j)^2 + (y_i - y_j)^2} ds_j + \gamma'_j \sum_{j=i}^m \int \frac{-(y_i - y_j)}{j(x_i - x_j)^2 + (y_i - y_j)^2} ds_j \qquad \dots$$
(15)

16-18 ตุลาคม 2556 พัทยา จังหวัดชลบุรี

$$\frac{y_{y}}{y_{\infty}} = \lambda'_{j} \sum_{j=i}^{m} \int \frac{(y_{i} - y_{j})}{j(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2}} ds_{j} + \gamma'_{j} \sum_{j=i}^{m} \int \frac{(x_{i} - x_{j})}{j(x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2}} ds_{j} \dots (16)$$

$$c_{p} = 1 - \left(\frac{v_{x}^{2}}{v_{x}^{2}} + \frac{v_{y}^{2}}{v_{x}^{2}}\right) \qquad \dots (17)$$

4. ผลลัพธ์และการวิเคราะห์

4.1 การไหลผ่านแพนอากาศ NACA 0015

จากรูปที่ 4 แสดงการแบ่งพาเนลสำหรับแพน อากาศ NACA 0015 โดยพาเนลแต่ละชนิดจะเป็น ซอร์สและวอเท็กซ์พาเนล

รูปที่ 4 การแบ่งพาเนลสำหรับ NACA 0015

จากรูปที่ 5 และ 6 แสดงความเร็วและความดัน ไร้หน่วยของของไหลที่ไหลผ่านพาเนลต่างๆ บน แพนอากาศ NACA 0015

รูปที่ 5 v/v_{∞} สำหรับ NACA 0015

จากรูปที่ 6 จะพบว่า ค่าที่ได้จากวิธีซอร์สและ วอเท็กพาเนลมีความแตกต่างจากผลลัพธ์ในงานวิจัยที่ ได้รับการตีพิมพ์ไปแล้ว ทั้งนี้ เนื่องจากในการศึกษานี้ ได้ใช้วิธีการแก้สมการแบบทับซ้อน ซึ่งพิจารณาซอร์ส

The NETT 2013

และวอร์เท็กแยกจากกันโดยสิ้นเชิง อย่างไรก็ตาม จะพบว่าแนวโน้มที่ได้นั้น เป็นไปในทำนองเดียวกัน ดังนั้น จึงสามารถที่จะใช้แบบจำลองดังกล่าว เป็นพื้นฐานในการพัฒนาไปสู่แบบจำลองทาง คณิตศาสตร์ที่ดีขึ้น

รูปที่ 6 c_{p} สำหรับ NACA 0015

4.2 การไหลผ่าน Airfoil NACA 64-212

จากรูปที่ 7 แสดงการแบ่งพาเนลสำหรับแพน อากาศ NACA 64-212 โดยพาเนลที่ใช้ในการศึกษา คือ ซอร์สและวอร์เท็ก และได้ศึกษาเกี่ยวกับอิทธิลของ สัดส่วนของซอร์สอีกด้วย

รูปที่ 7 การแบ่งพาเนลสำหรับ NACA 64-212

รูปที่ 8 c_{p} สำหรับ NACA 64-212

ในรูปที่ 8 แสดงค่าความดันไร้หน่วย C_p ของ ของไหลที่พาเนลต่างๆ โดยจะพบว่า ผลลัพธ์ที่ได้จาก แบบจำลองมีแนวโน้มไปในทิศทางเดียวกันกับผลลัพธ์ จากการทดลอง แต่ค่าที่ได้ยังมีความแตกต่างกัน พอสมควร ทั้งนี้ก็เนื่องจากการใช้วิธีทับซ้อนในการ พิจารณาแก้สมการของซอร์สและวอร์เท็กนั่นเอง

16-18 ตุลาคม 2556 พัทยา จังหวัดชลบุรี

4.3 การไหลผ่าน Airfoil NACA 63-415

จากรูปที่ 9 แสดงการแบ่งพาเนลสำหรับแพน อากาศ NACA 64-415 โดยพาเนลที่ใช้ในการศึกษา คือ ซอร์สและวอร์เท็ก

รูปที่ 10 c_p สำหรับ NACA 64-415

ความดันไร้หน่วยที่ได้จากโปรแกรมมีแนวโน้ม ไปในทางเดียวกันกับค่าการทดลอง แต่ยังมี ความคลาดเคลื่อนอยู่พอสมควร โดยความดันที่ได้จาก แบบจำลองจะมีค่าสูงสุดที่พาเนลที่ 1 ซึ่งเป็น จุดหยุดนิ่ง (Stagnation point) และมีความดันต่ำสุดที่ พาเนลที่ 8 แต่ในความเป็นจริง พาเนลที่ 8 ไม่ใช่ พาเนลที่ให้ค่าความดันต่ำที่สุด

จากผลลัพธ์ที่ได้ ทำให้มั่นใจได้ว่า แบบจำลองที่ สร้างขึ้น ให้แนวโน้มที่ถูกต้องในระดับหนึ่ง เพียงแต่ ยังให้ผลลัพธ์ที่ไม่ใกล้เคียงกับความเป็นจริงเพียงพอ

การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่งประเทศไทย ครั้งที่ 27

TSF-2035

16-18 ตุลาคม 2556 พัทยา จังหวัดชลบุรี

อย่างไรก็ตาม ผลจากงานวิจัยนี้ สามารถใช้เป็น พื้นฐานในการพัฒนาแบบจำลองทางคณิตศาสตร์ ต่อไปได้อีก โดยอาศัยเทคนิคบางประการในการแก้ สมการในส่วนของวอร์เท็ก หรืออาจปรับเปลี่ยน สัดส่วนของซอร์สให้มีเหมาะสมยิ่งขึ้น

5. สรุป

 5.1 วิธีซอร์สและวอร์เท็กพาเนล สามารถใช้ทำนาย ลักษณะการไหลของของไหลผ่านวัตถุเชิง 2 มิติ ได้ตรงตามทฤษฏีทั่วไป แต่ยังมีความคลาดเคลื่อนไป จากผลการทดลอง

5.2 ในการพัฒนาแบบจำลองทางคณิตศาสตร์สำหรับ วิธีซอร์สและวอร์เท็กควรจะมุ่งไปที่วิธีการแก้สมการ ที่สามารถให้ค่าความแข็งแรงของวอร์เท็กที่แตกต่าง กันได้ ซึ่งจะเป็นประโยชน์ในการประยุกต์ใช้งาน และ สามารถใช้เทคนิคบางประการ เพื่อปรับผลลัพธ์ให้ ใกล้เคียงกับการทดลองได้

6. กิตติกรรมประกาศ

คณะผู้วิจัยขอขอบคุณ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยบูรพา ที่ได้ให้ทุนสนับสนุนงานวิจัยนี้ จนสามารถพัฒนาแบบจำลองต้นแบบขึ้นมาได้

7. รายการสัญลักษณ์

- C สัดส่วนความแข็งแรงของซอร์ส
- n แกนปกติซึ่งตั้งฉากกับพาเนล
- q อัตราการไหลโดยปริมาตร (m³ s⁻¹)
- r ระยะห่างจากจุดศูนย์กลาง (m)
- s ความยาวของพาเนล (m)
- V ความเร็ว (m s⁻¹)
- x ระยะในแนวราบ (m)
- θ มุมที่ทำกับแกน x ในทิศทางทวนเข็มนาพิกา
- β มุมระหว่างแกน x กับแกน n
- φ ฟง้ก์ชั่นศักย์
- λ ความแข็งแรงของซอร์ส
- γ ความแข็งแรงของวอร์เท็กซ์

7. เอกสารอ้างอิง

[1] Bal, S. (1999). A potential based panel method for 2-D hydrofoils, *Ocean Engineering*, Vol. 26, pp. 343–361.

[2] Kim, G.D., Lee, C.S., Kerwin, J.E. (2007). A Bspline based higher order panel method for analysis of steady flow around marine propellers, *Ocean Engineering*, Vol. 34, pp. 2045–2060.

[3] Tarafder, Md.S., Suzuki, K. (2008). Numerical calculation of free-surface potential flow around a ship using the modified Rankine source panel method, *Ocean Engineering*, Vol. 35, pp. 536–544.

[4] Yao, J. (2010). Calculation of ship squat in restricted waterways by using a 3D panel method, 9th International Conference on Hydrodynamics 2010, Shanghai, China.

[5] Chen, Z.M. (2012). A vortex based panel method for potential flow simulation around a hydrofoil, *Journal of Fluids and Structures*, Vol. 28, pp. 378–391

 [6] A.M. Kuethe, C.Y. Chow, Foundations of Aerodynamics: Bases of Aerodynamic Design, 5th
 Edition, John Wiley & Sons Inc., New York (NY), USA.

[7] K. W. McAlister and R. K. Takahashi, NACA
0015 Wing Pressure and Trailing Vortex
Measurements, http://ntrs.nasa.gov/archive/ nasa/
casi.ntrs.nasa.gov/ 19920001763.pdf, February,
2013

[8] The pressure distribution and shape of theredesignedAirfoilNACA64-212,http://nasa1997.tpub.com/NASA-97-cr201686

/NASA-97-cr2016860062.htm, February, 2013

[9] C.Bak, P.Fuglsang, J. Johansen, I. Antoniou,
Wind Tunnel Tests of the NACA 63-415 and a
Modified NACA 63-415 Airfoil, http://130.226.56.
153 / rispubl / vea / veapdf / ris-r-1193.pdf,
February, 2013