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Abstract 
  Using a robust stability analysis theorem, we proposed an original control input reduction scheme 
for an existing robust linear control.  The resulting control was nonlinear, and was applicable to linear 
systems with nonlinear uncertainties simultaneously appeared in both the system matrix and the input 
matrix.  Without perturbations, our robust control guaranteed global exponential stability for the system 
of interest.  With perturbations, it assured input-to-state stability.  It appeared in our studies that 15% 
reduction in magnitude of control input had insignificant effects on tracking performance of the control 
system. 
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1. Introduction 
Saturations of amplifiers and actuators exist 

for certain in their physical implementations.  
Because these are important components in 
control system, such phenomenon is a subject of 
interest in the literatures.  Among these, founding 
results have emerged.  It were shown in [1] and 
later in [2] that, in general, linear control laws are 
insufficient for linear systems subjected to input 
saturation to be globally asymptotically stable.  In 
addition, this type of stability may be achieved by 
nonlinear controls if and only if the system matrix 
and the input matrix are stabilizable when no 
eigenvalue of the system matrix has positive real 
part [3].  An example may be found in [4] for a 
chain of integrators.   
 It was shown in [5] that linear control laws 
could ensure semiglobal asymptotic stability for 
linear systems with input saturation.  A low-gain 
control law was proposed to ensure that the 
resulting control input never saturates for any 
bounded set of initial conditions. For linear 
systems with known system matrix and input 
matrix, this technique was extended in [6] to 
construct a composite low-and-high gain control 
law.  In the same fashion as [5], the low-gain part 
was responsible for semiglobal asymptotic 
stability about the origin. The additional high-gain 
part was added to achieve performance, and 
robustness.  In all these works, uncertainties in the 
two matrices were not addressed.  
 The problem of robust stability analysis 
(RSA), in which allowable bounds on nonlinear 
uncertainties in the system matrix and the input 
matrix are computed for stable linear control 

systems, has been considered in parallel with the 
problem of robust controller design [7-9].  Matrix 
algebra and geometry were employed in [10] to 
develop a new RSA theorem, and a technique for 
extending the uses of RSA theorems over robust 
controller design for single-input linear systems.  
It was shown that the resulting allowable 
uncertainty bounds could be less conservative than 
those resulting from [11].    In all these, control 
input saturation was not considered. 
 In this paper, we extend the linear controller 
design technique for linear systems subjected to 
nonlinear uncertainties in both the system matrix 
and the input matrix such as those in [10-11] to 
acquire an additional distinct feature of reducing 
control input.  Using a state-feedback control law, 
we assure that the system is input-to-state stable 
when perturbation exists.  Without perturbation, 
the system is globally exponentially stable.  The 
corresponding gain matrix is constructed by 
combining a constant gain matrix and a state-
dependent gain matrix.  The former is for 
achieving robustness and performance in smaller 
neighborhoods about the origin. The latter is for 
reducing control input by continuously lowering 
the magnitude of the resulting gains to account for 
saturations of amplifiers and actuators in larger 
neighborhoods.  
 

2. Mathematical Description 
 In this paper, we are interested in computing 
control laws that guarantee input-to-state stability 
for the perturbed linear systems with nonlinear 
uncertainties: 
 



 

x [A A(x)]x [B B(x)]u f (x, t)        (1) 
 
where nx  is the state vector, the system matrix 

n nA   is known, the input matrix n mB   is 
known, mu  is the control input vector, the 
bounded vanishing nonlinear time-varying 
perturbation vector nf (x, t)  is unknown, and   
denotes nonlinear uncertainties with appropriate 
dimensions and known bounds for system matrix 
A and the input matrix B.  The origin is an 
equilibrium point of the system. We impose that 
the control inputs vector, the perturbation vector, 
and all uncertainty matrices are globally Lipschitz.  
Now we introduce the nonlinear state-feedback 
control law u(x) K(x)x  , where m nK(x)   is 
the state-dependent gain matrix to obtain.  We 
impose that   nK(x) K K (x)   where nK  and 

K (x)  are the nominal gain matrix, and the 
scheduling gain matrix respectively.  Note that 
K (x)  will be treated as psudo-uncertainties in the 
following development.  We denote the elements 
of K(x), nK , and K (x)  by ij nijk , k  and ijk  

respectively. Using the above structure for K(x) , 
we may write the control input as 

nu(x) u (x) u (x)  .     These are the resultant 
control input, the nominal control input, and the 
scheduling control input respectively.   
 

3. A Strengthened Class Gamma Theorem 
 Using the proposed control input, the system 
of interest can now be written as: 
 

x [A A(x)]x [B B(x)][K K (x)]x f (x, t)       
(2) 

 
When the perturbation is removed from Eq. (2), 
and nK  as well as all the associated uncertainty 
specifications are available, the resulting system 
can always be written as: 
 

r
j jj 1x Ax [h (x) E ]x      (3) 

 
where nA A BK   is known, n n

jE   is 

known, and jh (x)  is a nonlinear uncertain 

function, for which upper bound ujh  and lower 

bound ljh  are known.  We now present a robust 

stability analysis theorem that can be employed to 
determine if the system in Eq. (3) is globally 
exponentially stable.   
 

Theorem 1 If the dynamical system in Eq. (3) is  
globally Lipschitz with matrix A  being Hurwitz 
and max( (Z)) 0  , then the origin is globally 

exponentially stable.  The matrix T n nZ Z    is 
obtained by: 
1) Specified Q > 0 and A  to compute P from the 

Lyapunov equation. 
2) Compute r

l lj jj 1A A h E   , and 
T

l lΦ PA A P  . 

3) Compute T T
j j j jΨ [PE E P] Ψ   . 

4) Compute T
Ψ j ΨΨj jj

Λ T Ψ T ,  where the matrix 

Ψ Ψ 1 Ψ nj j j
T [ v v ]  ,  Ψ 1 Ψ nj j

{v , , v }  

is the set of n orthonormal eigenvectors of jΨ .   

5) Set all negative elements of Ψ j
Λ  to zero to get 

0
Ψ j

Λ  

6) Compute 0 0 T
Ψj Ψ Ψj j j

Ψ T Λ T  . 

7) Compute r 0
uj ljj 1 jZ Φ [(h h )Ψ ]

   . 

Proof We write for jh (x) , j = 1, 2, ..., r that 

j lj j lj lj jh (x) h h (x) h h l (x)     , where jl (x)  

j ljh (x) h . Since j lj ujh (x) [h , h ] , jl (x)  

uj lj[0, h h ] j  . Substituting lj jh l (x)  for jh (x)  in 

Eq.(2) yields r
j 1l j jx A x l (x)E x   . 

Now put Q > 0 into the Lyapunov equation 
TQ (1/ 2)[PA A P]   , then solve for P, and obtain 

T
l lΦ PA A P  .  Note that the Lyapunov function 

TV(x)=(1/2)x Px  is such that TP P 0   and 
2 2

(1/ 2) min( (P)) x V(x) (1/ 2) max( (P)) x    .  

We compute the Lyapunov time derivative, 
which may be written as V(x) ( V/ x)x      

T= (1/ 2)x Φx  r T
j 1 j j(1 / 2) l (x)x Ψ x .  Note that the 

definitions of Φ , and jΨ  are given previously. 

Since T
jΨ  jΨ  j , jΨ  has a set of n real 

eigenvalues Ψ 1 Ψ nj j
{ , , }   and the 

corresponding set of n orthonormal eigenvectors 

Ψ 1 Ψ nj j
{v , , v } .  Using the linear 

transformation Ψ j
x T z , we now write 

TT T T
j j Ψ ΨΨ j jj

x Ψ x z [T Ψ T ]z z Λ z  .  Notice that 

Ψ j
Λ Ψ 1 Ψ nj j

diag[ ]   . 

We set all negative elements of ΨjΛ  to zeros 

to obtain 0
ΨjΛ .  Because 0T

Ψ j
z [Λ ]z 0  , it follows 



 

that 0T
Ψjz [Λ ]z  T T

Ψj jz Λ z x Ψ x .  Accordingly, 
00 01 1T T T T

jΨ Ψ Ψ Ψj j j j
z [Λ ]z x [T ] [Λ ][T ]x x Ψ x 0     ,  

where 0 01 1T
j Ψ Ψ Ψj j j

Ψ [T ] [Λ ][T ]   .  Because matrix 

Ψ j
T  is orthogonal, it follows that 1 T

Ψ Ψj j
T T  , and 

0
jΨ  0 T

Ψ Ψ Ψj j j
[T ][Λ ][T ] .  Because 0 T

j[Ψ ] 0
jΨ   

and uj lj j(h h ) l (x) 0   , we now have that 
0T T

j j uj lj jl (x)[x Ψ x] (h h )[x Ψ x] x   . 

Applying the last inequality in V(x)  shows 

that r 0T T
j 1 uj lj j

1 1
V(x) x Φx ((h h )[x Ψ x])

2 2


   . By 

letting  r 0
uj ljj 1 jZ Φ [(h h )Ψ ]

   , we have shown 

now that TV(x) (1/2)x Zx .  If max( (Z)) 0  , then 

it follows that 2V(x) (1/2)max( (Z)) x  .  This 

indicates that the origin of Eq. (3) is a globally 
exponentially stable equilibrium [12].  The proof 
is now completed.      
 
 Theorem 1 gives the conditions that guarantee 
exponential stability of the origin of the 
unperturbed system in Eq. (3).  Although not 
shown explicitly, this type of stability implies 
exponential rate of convergence for all trajectories 
[12], which should provide satisfactory level of 
performance in many applications.   With the 
existence of perturbation vector nf (x, t)  in the 
system of interest, we can arrive at a weaker type 
of stability as shown in the following Corollary 1. 
 
Corollary 1 If Theorem 1 is satisfied, then the 
origin of the system in Eq. (2) is input-to-state 
stable. 

Proof  Following the proof of Theorem 1, we 
have along the trajectory of Eq. (2) that V(x, t)   

T(1 / 2)x Φx  r T
j 1 j j(1 / 2) l (x)x Ψ x + ( V/ x)f(x,t)  . 

Then, V(x,t)  T(1/2)x Zx  +( V/ x)f(x,t)  .  Now, let 

f(x,t)  be  bounded by   and notice that 
TV/ x=x P  .  Because TP P 0  , it follows that 

V(x,t)  T(1/2)x Zx +max( (P)) x  . If given that 

max( (Z)) 0   as in Theorem 1, then V(x,t)   
2(1/2)max( (Z)) x +max( (P)) x  .  For any given 

bound   on f(x,t) , the last inequality implies the 

existence of the corresponding region n  in 
which x   2 max( (P)) / max( (Z))     and V(x,t)  

< 0  in   t .  With TP P 0  , this implies that 
the trajectory is finally contained in n   for all 

initial conditions.  Input-to-state stability is 
asserted, and the proof is completed.   

 Theorem 1 and Corollary 1 are central to our 
controller design technique in the sense that they 
can be employed to confirm stability of a robust 
linear control when the control input is reduced.   
To do this, however, we require not only a 
stabilizing gain matrix nK , but also an appropriate 
matrix Q.   
 

4. Control Law 
 In addition to being theoretically applicable to 
the dynamic system of interest in Eq. (2), the 
robust linear controller design technique in [10] 
yields both nK  and Q simultaneously as a 
stabilizing solution pair.  This is a distinctively 
desirable property for us because these two 
matrices are required in Theorem 1 to show global 
exponential stability.  Accordingly, we decide to 
extend this robust control technique by the use of 
Theorem 1 to acquire an original capability of 
reducing control input for it.  It turns out that the 
resulting robust control is nonlinear.  It guarantees 
input-to-state stability for the perturbed system in 
Eq. (2), and exponential stability for the 
unperturbed system in Eq. (3), with reduced 
magnitude of control input when compared to that 
resulting from [10].  Our technique is composed of 
two portions.  The former is to find nK - the 
nominal linear gain matrix for stabilization, and 
the latter is to find K (x)  - the scheduling 
nonlinear gain matrix for control input reduction.  
These are given in the followings. 
  
4.1 Computing Kn 
 For convenience, we now take from [10] the 
following procedure:      
1)  Define a two dimensional domain of ρ 0  

and η 1 , and select a grid size for this 
domain.  

2) Select coordinate ( ,  )  , then complete step 2 
– 5. 

3)  solve for P from T T2I PA A P 2ρPBB P    . 

4) Compute nK  from T
nK ηρB P . 

5) Compute Q from Q I (η 1)N   . 

 Now, for each pair of ( nK , Q) obtained from 

the above procedure, compute max( (Z))  in 
Theorem 1 using the available uncertainty 
specifications on lj ujh ,  h  and jE j .  The 

procedure terminates successfully when Theorem 
1 is satisfied by a stabilizing pair of ( nK , Q).  In 

this case, we have the nominal gain matrix nK , Q, 



 

and the corresponding allowable bounds on all  
nonlinear uncertainties in A and B.  These 
uncertainties do not include allowable bounds on 
the nonlinear scheduling gain matrix K (x) , 
which will be discussed in the next section.   
 
4.2 Computing K (x) 
 While preserving the required type of stability 
resulting from nK  determined previously, we now 
employ the scheduling control input 
u (x) K (x)x    to reduce the magnitude of the 

resultant control input u(x) K(x)x  , that would 
otherwise equals to the nominal control input 

n nu (x) K x  .  We know by continuity of the 
maximum eigenvalue of matrix Z in Theorem 1 
that this is always possible.  Now, let the (i, j) 
element of K (x)  and the corresponding upper 

bound be denoted by, ijk (x)   and ijh 
   

respectively.  We treat ijk  as psudo-uncertainties 

that enter the system of interest via u(x).  Without 
loss of generality, we arrange the psudo-
uncertainty ijk  such that the lower bound is zero 

for convenience in later development.  
Note that it is not necessary to use all ijk  for 

control input reduction.  Experience with the 
system of interest under the nominal control is 
helpful to identify that using a certain ijk  may be 

more effective than the others.  The same goes for 
setting positive values for ijh , later which we 

will see that it indicates the degree of control input 
reduction. With all the selected ijk  and the 

corresponding ijh  available, we now have an 

additional set of psudo-uncertainty specifications.  
We then write the system with all uncertainty 
specifications as in Eq. (3), and employed 
Theorem 1 again to determine if the required 
control input reduction does not destabilize the 
system.  Adjustments on ijk  and ijh  may be 

required for Theorem 1 to be satisfied.     
   Now that the allowable bound ijh  on an 

elected scheduling gain ijk  is found, we propose 

the following function for ijk : 

 

ij ni ij
ij nij ij

ij ni ij

tanh( u ) 
k sign(k )h 1 0.5

 tanh( u ) 

     
            

(4) 

 
where nijk  is the (i, j) element of the nominal gain 

matrix nK , ij 0   and  ij 0   are real 

parameters.  Note also that niu  denotes the i-th 
component of the nominal control input vector 

nu .  Similarly, we use iu  and iu  to denote the i-

th component of u  and u respectively. 
 We propose the function in the RHS of Eq. (4) 
primarily because it has desirable distribution that 
can be preserved over large domains.  This will be 
discussed in the followings.  The function is 
continuous and is approximately zero in the 
neighborhood about the origin of niu .  The size of 
this neighborhood is primarily determined by the 
parameter ij .  As niu  increases, ijk  increases 

accordingly at a rate primarily determined by ij , 

and is finally bounded by ijh .  To see how ijk  

may be employed to reduce the resulting control 
input, consider Fig. 1, in which ijk  and  ijk  is 

plotted versus niu  when nijk 2  , ijh 1  , ij 1  , 

and ij 4  .  Notice that the magnitude of 

ij nij ijk k k   decreases as niu  increases.  

Accordingly, the magnitude of iu  may be reduced 

by introducing iu  appropriately.    
 

 
Fig. 1 Typical distribution of ijk   

and its effects on ijk  

  
If a nominal operating region of the system is 

known, then an upper bound niu  on magnitude of 
nominal control input may be obtained 
accordingly.  In this case, it can be shown that we 
may achieve similar distribution of ijk  over niu  

as in Fig. 1 by choosing parameter ij ni10 / u  , 

and fixing parameter ij 4  . 

 
5.  Example 

 A 5-joint modified SCARA (Selective 
Compliant Articulated Robot Arm) with 
independent joint control is to move a tool along a 
fixed trajectory.  During normal operations, the 

 

ijk  

ijk  

nijk  

niu  



 

magnitude of control input for the revolute joint 1 
is tightly bounded by 100 V.  Because the 
amplifier is near saturation at 110 V, we desire to 
lower the control input without affecting robot 
performance.   

The control system for the DC joint motor is 
subjected to nonlinear uncertainties and 
perturbations resulting from robot operations.  
Now let e(t) be joint angle tracking error, and 

define the relevant state variables 
t

10
e dt x , 

2e x , and 3e x . Dynamics of the control 
system may be represented by Eq. (5).   
  

 

 

1 1

2 2

3 1 3

2

x 0 1 0 x

x 0 0 1 x

x 0 0 3.8 h (x) x

0 0

0 u 0

89.3 h (x) f (x, )

    
         
         
   
       
       







  (5) 

 
The nonlinear functions 1h (x) [0,  0.86] , and 

2h (x) [0,   20.52]  result from uncertainties in 
robot parameters and operations.  The smooth 
function f (x, )  [ 1500,   1500]  in the perturbation 
vector results from joint interactions and changes 
in tracking signal.  Because of their length and 
complexity, we do not show these functions here.  
However, the exact expressions for these may be 
obtained from [13].    

Recall that our control law is given by 

nu(x) [K   K (x)]x  with  n n1 n2 n3K k k k , 

and K  1[k (x)  2k (x)  3k (x)]  in this example.  

For simplicity, we elect that 1k (x) 0  , and 

3k (x) 0  .  Following the procedure given in 

Section 4.1, we find that the pair ( , )   (0.5, 4)  

yields the nominal control n nu (x) K x   with 

nK [ 2.83   4.92  2.78]   and  

4.0000    5.2206    2.9519

Q 5.2206   10.0848   5.1369

2.9519    5.1369    3.9046

 
   
  

. 

The above pair ( nK , Q) is a stabilizing solution 

because it yields max( (Z))  0.5335  in Theorem 
1.  Many other stabilizing solutions exist, but we 
do not pursue them because the above already 
serves sufficiently as an example.   

 Because max( (Z)) 0  , we know by 
continuity that the control system can tolerate 
some control input reduction.  A little matrix 
manipulation reveals that our specified control 

input reduction can be written as additional 
uncertainty in element (3, 2) of the system matrix 
A.  The upper and lower bounds for this element is 
1.5(89.3 + 20.52), and zero respectively.  For 
demonstration purpose, we arbitrarily pick 

2h 1.5   and reapply Theorem 1.  This additional 

uncertainty yields max( (Z))   0.3722 .  Now, we 
have for control input reduction the scheduling 
nonlinear gain: 
  2 n nk 1.5(1 0.5(tanh(0.1u 4) tanh(0.1u 4)))      , 
and we have confirmed by using Theorem 1 that it 
does not destabilized the system.  Clearly, we can 
increase the reduction bound 2h  further to 
acquire more control input reduction before 
Theorem 1 is violated, although the number 
already serves sufficiently as an example.   

Letting the tracking reference signal for the 
revolute joint be r(t) 390(t + 0.2sin(4t))  rad, we 
run numerical simulations for two cases.  In the 
first case, no control input reduction is employed 
and nu(x) u (x) .  In the other, we employed 

control input reduction and nu(x) u (x) u (x)  .  
The simulation results in Fig. 2 show that the state 
is bounded in all cases.  Tracking errors in both 
cases are almost the same, while the bound on 
magnitude of u(x)  in the second case is only 85% 
of that in the first case.  
 

Fig. 2 Tracking error (upper)  and control input  
(lower) Solid: with control input reduction,  

Dash: without 
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6. Conclusion 
 We are interested in linear systems subjected 
nonlinear uncertainties that enter the system 
matrix and the input matrix simulataneously.  
Also, nonlinear time-varying perturbation may 
exist. We propose a robust stability analysis 
theorem, which becomes a portion of our original 
nonlinear controller design technique.  Our 
technique can generate a nonlinear control law 
that offers a guaranteed level of performance 
through global exponential stabilization of the 
unperturbed system.  The resulting control law 
simultaneously guarantees that, when the 
perturbation is bounded, the state of the perturbed 
system is also bounded.  Finally, our control law 
can reduce the magnitude of control input from 
the nominal value in large regions about the 
equilibrium point at the origin.  It turns out in 
studies that 15% reduction in magnitude of control 
input has insignificant effects on tracking 
performance of the control system. 
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