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Abstract 

In engineering applications, the problem geometries are usually found by constructing with 
complex shapes. Under a condition, it is seems to be an impossible things to solve using analytical 
methods. As a result, the use of numerical method is a possible way to overcome those problems. This 
paper presents the numerical method for solving the two-dimensions steady state diffusion. A computer 
program has been developed based on the finite volume method and triangular unstructured grid 
arrangement. The considered diffusion problems are governed by the second order PDE equation. They 
are discreted by using the central differencing scheme. A two-dimensional heat conduction with complex 
shape have been investigated to assess the reliability of the computer program. The predicted shows that 
the developed computer program gives a good result compare with the reference data. 
Keywords: Numerical methods, Diffusion problem, Finite Volume Method, Triangular Unstructured Grid. 
 

1. Introduction 
          In general, the engineering applications 
are combined with the complex geometries. This 
condition is difficult or impossible to solve by 
using an analytical method. To overcome this 
problem, the numerical method is employed to 
solve for an approximation solution rather than 
those of exact solution. Concept of the numerical 
method starts from dividing the domain to the 
finite number of the control volumes (cells). Due 
to the complex shape of the geometry, however, 
the use of unstructured mesh is more efficient 

than the use of structured mash as shown in 
Fig.1. As a result, the unstructured mash is 
usually found as a widely use in numerical 
strategy and will be adopted in the present work. 
         This paper presents a development of the 
computer code for predicting of steady two-
dimensions diffusion problems. The numerical 
methodology adopted here is based on finite 
volume discretization and triangular unstructured 
grid. This is because the computer program will 
be extended for CFD development process in the 
future. The central differencing scheme is used to 
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discrete the governing equation. Four validation 
problems are used to assess the computer code. 

 
Fig.1 Unstructured mesh for complex geometry. 

2. Numerical Methodology 
2.1 Discretization Technique 
         In general, the governing equation[1] for 
the diffusion problem can be written in the 
general form as follows. 

                                                         (1) 
Where   denotes the diffusion coefficient,   is the 
attentive variable and    is the source term. 
Based on the concept of the finite volume 
method, this governing equation will be integrated 
over the control volume as follows. 

                   
          

             (2) 
To determine the diffusion flux throughout the 
control volume, one can determine on the surface 
integral rather than volume integral as follows. 

                       

       
             (3) 

It should be note that the use of surface integral 
gives a more efficient than those of the volume 
integral because it is convenient to determine the 
flux through the cell faces. 
2.2 Unstructured Mesh Technique 

         The mashing technique adopted here is 
the so-celled triangular unstructured grid. This 
mash type consists of three cell faces. After 

employing such meshing into Eq.(3), the equation 
can be written as follows. 

                    
 
               (4)  

 Where    is the cell area of face and    is the 
cell volume. 
           Fig.2 shows the relation between the center 
node and the neighbor nodes. It can be seen that 
the relation of those nodes are combined by the 
unit vectors in normal and tangent directions. The 
control volume consists of three vertices a, b and 
c. it should be noted that those three vertices 
must be ordered to provide the counterclockwise 
with respect to the center node. This is necessary 
to preserve a unique direction of all surface 
vectors and in this case the outward direction of 
all unit normal vectors      is attained. 

 
Fig.2 Detail of grid information 

         The diffusive flux through face ab can be 
approximated by using the numerical differencing 
scheme. In the present work, such approximation 
has been derived in form of the direct gradient 
term and the cross-diffusion term as follows.    
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 Eq.(5) can be rearranged as follows: 
                         -                   (6) 

Where D is the diffusion coefficient from the direct 
gradient term and S is the cross-diffusion term 
which will be treated as the source term. 
         Substitution the Eq.(6) into Eq.(4), thus 

                 -      
 
                       (7) 

It can be seen that Eq.(7) is expressed in the 
form of liner algebraic equation. The index i 
represents the running number of the cell faces. 
After applying Eq.(7) to all faces, the equation 
can be written as follows: 

                                     (8) 
Where 
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and                                            

       Eq.(8) will be applied to all nodes in the 
domain and then has been solved by Gauss-
Seidel relaxation method iteratively. 

3. Code Validations 
 3.1 Case A: Square plate with Constant 
Boundary Values 

A two dimensional square plate with a 
size of 1x1 m2 is taken to use as the first problem 
for assessing an efficiency of the developed code 
in calculating based on the simple triangular 
mesh. The boundary conditions of the top side of 
the square plate is maintained with temperature 
of 100°C and the rest sides are subjected to the 

temperature of 0°C as illustrated in Fig.3. The 
plate made from material with a specified thermal 
conductivity (k) of 50 W/m°C.  
      An analytical solution[2] for this problem can 
be calculated from a following expression. 
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Fig.3 Boundary condition and grid configuration 

       The numerical prediction is performed on 
five grid sets with the grid number of 836, 2028, 
4924, 14342, and 22518 cells in order to find out 
the grid independent set. Comparison of the 
temperature results along the midline x=0.5 m are 
shown in Fig.4. It can be seen that the predicted 
results give a very well agree with the analytical 
solutions.  

 
Fig.4 Comparison of temperature for Case A 
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        Fig.5 shows the distribution of the error. It 
can be seen that the errors are distributed within 
the range from -0.2% to 0.075%. With the lower 
density of meshing, the errors trend to shift left to 
the negative zone but the distribution of the errors 
trend to spread out. Fig.6 displays the contours of 
the temperature. It can be seen that the high 
temperature is produced in the upper zone and 
then cool down in the lower zone. 

 
Fig.5 Error distribution of Case A 

 
Fig.6 Contours of temperature distribution 

3.2 Case B: Square Plate with Various 
Boundary Type 
         This validated case is constructed with a 
rectangular plate with the size of 0.3x0.4 m2. This 
case is set for assessing an efficiency of the 
developed code on the several of boundary 
conditions. In this case, the top side of the plate 
is fixed with a constant temperature (T) of 100°C.  

The left side is subjected a constant heat flux of 
q=500      . The rest two sides of the plate are 
set with the condition of insulating as illustrated in 
Fig.7. The plate made from material with a 
specified thermal conductivity (k) of 1000 W/m°C.  

An analytical solution for this problem can 
be calculated from a following formulation. 
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Fig.7 Boundary condition for Case B 

           Five grid sets of 366, 898, 1414, 6064, 
and 14426 cells numbers are used to check for 
the grid independent. Comparison of the 
temperature results along the midline x=0.15 m 
are shown in Fig.8. It can be seen that the 
predicted results give good agreement compared 
with the exact solutions. 

 
Fig.8 Comparison of temperature for Case B  
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        The error distribution of case B is shown in 
Fig.9. It can be seen that they are distributed 
within the range from -0.4% to 0.4%. The lowest 
density meshing gives positive zone distribution 
with a more spread out than the finer ones. The 
temperature distribution is depicted in Fig.10. It 
can be observed that the high temperature is 
condensed at the bottom left corner of the plate 
with the maximum temperature of 280oC. This is 
because the heat flux on the left side transfers 
the heat energy inside the plate. The heat energy 
is protected (no heat lose) by the insulating walls 
and then distributed to the upper zone. 

 
Fig.9 Error distribution of Case B 

 
Fig.10 Contour of temperature for Case B 

3.3 Case C:  Diffusion in a Circular Hollow  
 The diffusion in a circular hollow problem 

is set for validating the computer code in 
calculating on the complex geometry. This 
problem is look like two dimensional donut with 
the inner (   ) and outer (    ) radius of 1 and 2 
m, respectively. The inner boundary of the hollow 
is maintained to a constant temperature of 100°C. 
The outer boundary is subjected to an ambient 
temperature of 30°C with the heat transfer 
coefficient (h) of 12     . Due to a symmetrical 
hollow as shown in Fig.11, a haft domain 
consideration is sufficiently in the process of 
numerical prediction. As a result, the symmetry 
plane will be defined with the condition of 
insulation because no heat transfers across those 
symmetry planes. In this present, the hollow 
made from material with a constant thermal 
conductivity (k) of 15 W/m°C.  

 
Fig.11 Domain/boundary condition for Case C 
         The analytical solution[3] of this problem 
can be calculated from the following equation. 
                        -
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         The grid independent checking of this case 
is performed based on seven grid test sets 
corresponding to the cells number of 530, 1848, 
3930, 8630, 11548, 16290, and 23796  
respectively. Comparison of the temperature 
along the section line of x=0 m is shown in Fig. 
12. It can be seen that the predicted results are 
satisfactorily with the analytical results. The 
temperature distribution has a maximum value of 
100oC at the inner surface and then reduces to 
reach a minimum value of 63.2 at the outer 
surface of the hollow. The temperature contours 
are illustrated in Fig.11 and the distribution of the 
errors of each grid sets are displayed in Fig.13.  

 
Fig.12 Comparison of temperature for Case C  

 
Fig.13 Error distribution of Case C 

3.4 Case D: Diffusion in a Hexagonal Shape 
        The last test case in the present work is the 
diffusion in a hexagonal shape. Dimension and 

boundary conditions of the considered case are 
described in Fig.14. The domain of computation 
here is reduced to a haft part of the hexagonal 
due to the symmetry shape. The outer top 
boundary is set with the condition of insulation 
while the rest boundaries are specified with the 
several constants of the temperature. The thermal 
conductivity (k) of the hexagonal is set to 50 
W/m°C.  
       This problem has been performed on seven 
grid sets of 697, 900, 2270, 3600, 4467, 6706, 
and 9903 cell numbers. The distribution of 
temperature is displayed in Fig.14. It can be seen 
that the maximum temperature is distributed in 
the left and right outer zones due to an 
attachment to the high temperature boundaries. 
The distributions of the errors are illustrated in 
Fig.15. It can be seen that the distribution are 
within the range of -0.3% to 0.3%. The lower 
density meshing seems to give the negative 
distributions with a more spread out than the finer 
ones.  

 
Fig.14 Domain/boundary conditions for Case D     
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Fig.15 Error distribution of Case D 

4. Conclusions 
         This research work presents the numerical 
methodology for predicting the two-dimensional 
diffusion problems. The computer code is 
developed based on finite volume method and the 
triangular unstructured meshing is implemented.  
Four test cases of the diffusion problems are 
investigated to assess the accuracy in predicting 
of the developed computer code. The results 
shown that the developed computer code gives 
the satisfactory results compare with the 
analytical solutions.  
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