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Abstract 
 In the present paper, the steady two-dimensional temperature field in a plate subjected to highly 
localized volumetric heat generation is numerically investigated.   The integral form of heat conduction 
equation is solved by using the concept of Control Volume Finite Element Method (CVFEM) which 
combines the ideas from Finite Element Method (FEM) and Finite Volume Method (FVM).    In some 
literatures, it has been referred to as vertex-centered Finite Volume Method.      The control volume mesh 
of CVFEM is built from the primary triangular mesh created by the same procedure for three-node 
triangular mesh generation as found in FEM.   In contrast to the one-point integration scheme which used 
in conventional cell-centered Finite Volume Method, a multiple-point integration scheme is developed for 
more accurate integration of heat generation term.    A square plate made of isotropic homogeneous 
material with boundary conditions of zero temperature along all edges is utilized as the solution domain.  
The effect of heat generation parameter and mesh arrangement, including structured and unstructured 
meshes, on the numerical solutions are observed.     Furthermore, since this study does not attempt to 
solve the problem by using adaptive method, structured and unstructured meshes are provided by 
dividing the domain’s boundary with uniform spacing.   The spacing length depends on the mesh size 
requirement of each calculation.   A non-dimensional error indicator for evaluating the accuracy of 
numerical solutions is also developed.      The numerical results show that the saw-tooth temperature 
contours can be noticed in high thermal gradient zone, close to the central of the plate.     The wavy 
temperature contours revealing the inaccuracy of numerical results can be reduced by using either fine 
unstructured mesh, multiple-point integration scheme or both.   
Keywords: Control volume finite element method, heat transfer, non-uniform heat generation.   
 

1. Introduction 
 Many applications in engineering practice 
involve the heat transfer analysis of solid body 
subjected to internal heat generation including 

nuclear fission in fuel elements of nuclear 
reactors, chemical reaction taking place within the 
solid body or the passage of electric current 
through the solid.   Several researchers 
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developed the numerical procedures for solving 
this heat transfer problem such as Boundary 
Element Method (BEM) and Finite Element 
Method (FEM). 
 The BEM techniques for heat conduction 
problem with internal heat source have been 
proposed in literatures during last decade.   Shiah 
and Lin [1] presented a multiple reciprocity BEM 
formulation for analyzing the thermoelasticity of 
anisotropic plate subjected to thermal loading due 
to the internal volumetric heat source under 
steady state.   Several forms of non-uniform heat 
generation rate were employed to test their 
methodology by comparing their results with the 
FEM results.   Mohammadi et al. [2] reported the 
BEM results for the unsteady heat conduction 
problem involving non-homogeneous and time-
dependent heat source.    Various heat sources 
such as time-independent non-uniform heat 
source, time-dependent non-uniform heat source 
and temperature-dependent heat source were 
tested by their BEM technique.  Although BEM 
offers advantage over FEM including the smaller 
matrix size due to the reduced number of nodes, 
FEM receives more attention than BEM because 
of its simpler mathematical formulation. 
 Several investigations were performed by 
using FEM with adaptive technique.   Bag et al. 
[3] used FEM to find the transient response of 
axisymmetric heat conduction in a plate subjected 
to heating from laser beam in laser welding 
application.     The adaptive finite element result 
was reported for the intense highly localized 
surface heating problem in square plate [4-5].   In 
afore-mentioned articles, the use of highly 
localized refined meshes is required for accurate 
temperature fields.  The adaptive remeshing 

technique is utilized in [4-5] to generate 
unstructured mesh which provides the small 
elements in the regions that the temperature 
changes is large whereas the large elements are 
placed in the regions that temperature change is 
small.    To avoid using the special computational 
technique cited above, a numerical procedure is 
developed.  
 The numerical method used in this work 
is the control volume finite element method 
(CVFEM).  Sometimes, CVFEM is referred to as 
the vertex-based finite volume method which is a 
type of finite volume method (FVM) which the 
nodal points are first defined and then the control 
volumes are constructed around them. The brief 
introduction to CVFEM concept, discretization of 
governing equation and solution procedure will be 
found in section 2.  Besides, the solution 
accuracy is further improved by changing the 
integration technique of heat generation term from 
the conventional one-point integration that was 
used in cell-centered finite volume method [8] to a 
new one called the multiple-point integration.  
Both integration schemes will be also mentioned 
in section 2.   Section 3 describes the 
computational meshes for calculations and the 
criterion to evaluate the accuracy of numerical 
solutions.  The numerical results are exhibited 
and discussed in section 4.  Finally, section 5 
presents the conclusions. 

2. Mathematical formulation  
2.1 Heat conduction equation 
 The heat conduction is simulated here by 
considering the two-dimensional steady heat flow 
through a square plate with isotropic and 
homogeneous properties. The governing equation 
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for steady two-dimensional heat conduction can 
be written in Cartesian ( )yx,  coordinates as 
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where T  is the temperature, k  is the material 
thermal conductivity and Q is the internal heat 
generation per unit volume.   To find the solution, 
the appropriate boundary conditions have to be 
imposed on the domain’s boundaries.  
 The common types of boundary condition 
for the heat conduction analysis are available 
such as (a) specified surface temperature, (b) 
specified heat flux on the surface, (c) specified 
surface heat convection and (d) specified surface 
heat radiation.   Only the boundary condition type 
(a) is utilized in this paper.       
2.2. Numerical method 
 In this section, the definition of control 
volume is firstly described.   Next, the derivation 
of discretized equation is given.   Finally, the 
solution procedure for numerical calculations is 
outlined.  
2.2.1 Domain discretization 
 The computational domain is subdivided 
into a finite number of contiguous control volumes 
by a numerical grid.   The grid nodes define 
vertices of control volumes.   They are built from 
the triangular grid that can be constructed from 
mesh generation subroutine available in FEM 
commercial code or independent pre-processor 
software.  Fig. 1 exhibits the polygonal control 
volume and triangular meshes which their typical 
meshes are filled by the light-blue and light-green, 
respectively.  A polygonal control volume around 
each node is constructed by joining the centers of 
neighboring triangular elements to corresponding 
sides of those elements. 

 
Fig.1 Control volume and triangular meshes 

 
2.2.2 Control volume finite element method 
 The key step of CVFEM is the integration 
of Eq. (1) over a two-dimensional control volume 
(CV) yielding 

            ∫ =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂
∂ 02

2

2

2

dVQ
y
T

x
Tk . (3) 

The volume integrals in the first parenthesis on 
the left hand side are rewritten as integrals over 
the entire bounding surface of the control volume 
by using Gauss’ divergence theorem [7].    Eq. 
(3) can be rewritten in the following form: 
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where xn and yn  are the direction cosines of unit 

vector of entire surface bounding control volume 
(CS) in x  and y  directions, respectively.  The 
surface integral on the left hand side of Eq. (4) is 
evaluated by midpoint-rule as 
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where AΔ is the face area defined as a portion of 
entire surface bounding control volume and 
subscripts i  counts the number of faces from 1 
to NI. The temperature gradients at the faces can 
be computed by using the shape functions [8-9], 
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where k  = 1, 2, 3; and kN represent the shape 
functions of linear triangular elements. 
 The volume integral of internal heat 
generation is approximated by mid-point rule, 

PPVQQdV =∫ , (7) 
where PQ  is the internal heat generation rate 
computed at the node P and PV is the volume of 
the control volume surrounding node P.  This 
scheme is referred to as one-point integration 
(CVFEM-OP) and shown in Fig. 2(a).  Its 
counterpart, multiple-point integration (CVFEM-
MP), is illustrated in Fig. 2(b). 
 

 
(a) 

 
(b) 

Fig.2 Numerical integration schemes for heat 
generation term: (a) CVFEM-OP, (b) CVFEM-MP 

 
In CVFEM-MP, the volume integral of 

internal heat generation is evaluated by changing 
the whole integration over the control volume into 
the summation of integrations over sub-control 
volumes.  In Fig. 2(b), the typical sub-control 
volumes such as ABP, BCP, CDP, DEP, EFP and 
FAP are shown.   The individual integration in 
sub-control volume is computed by mid-point rule.  
The integral in sub-control volume is calculated 
by multiplying the heat generation value at the 

center of sub-control volume by the volume of 
that sub-control volume.    The concept of 
CVFEM-MP may be written as 

m
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m
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where mQ  is the internal heat generation at the 
center of sub-control volume and the subscript m 
counts  the number of sub-control volumes from 1 
to NE. 
2.2.3 Solution procedure 
 The discretized equations for the 
temperature of all control volumes of CVFEM-OP 
are obtained by substituting Eqs. (5), (6) and (7) 
into Eq. (4).  Slightly different from CVFEM-OP 
approach, the discretized equations for CVFEM-
MP are gained by substituting Eqs. (5), (6) and 
(8) into Eq. (4).    Next, the system of algebraic 
equations are incorporated with boundary 
conditions and solved by using the matrix-free 
Gauss-Seidel point-by-point iterative solver.  The 
stability of numerical solutions is also enhanced 
by using the under-relaxation parameter of 0.5.  
The iteration is terminated when the tolerance is 
less than 10-6.  

3. Problem of interest 
 In Fig. 3, a square plate with 0.01 m 
thickness where all edges are constrained to a 
constant temperature T=0oC.  The spatial domain 
is defined by (0≤ x≤ 1 m, 0≤ y≤ 1 m).  The plate 
has thermal conductivity k = 1 W/(m.K) and 
generates volumetric heat Q as follows 
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andα  is the parameter that controls the intensity 
of heat sink and heat source in addition to the 
distribution of heat generation in the plate.   The 
analytical temperature is given as 

( )( ) β1tan11 −−−= yxxyT  (11) 
The analytical temperature distributions for 

50=α  and 100=α  are shown in Figs. 4(a) – 
4(b), respectively.   In Figs. 4(c) – 4(d), the 
internal volumetric heat generation profiles along 
s coordinate for 50=α and 100=α  are 
respectively illustrated. 

 
Fig. 3 Geometry, coordinates, and boundary 
conditions for heat conduction in a square plate. 
 
3.1 Computational mesh 
 In this work, two types of triangulation 
patterns are selected for numerical calculations 
including structured and unstructured meshes.  
The summary of the number of nodes and 
elements in all computational meshes is shown in 
Table 1.  Six levels of mesh size are employed 
for the numerical calculations. The first three 
levels are used for the case of 50=α  while the 
last three levels are used for the case of 100=α .  
For the comparison purpose, the number of 
nodes in unstructured mesh (USM) is selected as 
close as possible to the number of nodes in 
structured mesh (SM) under the same level of 
mesh size such as SM1 and USM1.   Figs. 5 and 

6 exhibit the shape of triangular elements and 
distribution of nodal points of computational 
meshes both structured and unstructured. 

 

  
(a) (b) 

 
(c) 

 
(d) 

Fig. 4 (a) analytical temperature contours for 
50=α  (b) analytical temperature contours for 
100=α (c) volumetric heat generation 

distribution along s coordinate for 50=α  (d) 
volumetric heat generation along s coordinate for 

100=α . 
 
Table 1 Total number of nodes (N) and total 
number of elements (E) in structured mesh (SM) 
and unstructured mesh (USM) 
Mesh N E Mesh N E 
SM1 961 1800 USM1 936 1762 
SM2 1681 3200 USM2 1239 2348 
SM3 2601 5000 USM3 2423 4664 
SM4 3721 7200 USM4 3583 6944 
SM5 5041 9800 USM5 4751 9248 
SM6 6561 12800 USM6 5944 11602 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 5 The computational grids of (a) SM1, (b) 
SM2, (c) SM3, (d) SM4, (e) SM5, and (f) SM6 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 6 The computational grids of (a) USM1, (b) 
USM2, (c) USM3, (d) USM4, (e) USM5, and (f) 
USM6 
 
3.2 Error evaluation 
 A non-dimensional error measure, E, is 
defined for assessing the numerical accuracy of 
numerical solution as follows 
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 where the superscripts A and N imply the 
analytical and numerical solutions, respectively; 
the subscript j counts the number of nodal points 
in the domain.     

4. Results and discussion 
In the present paper, the analytical and 

CVFEM results are compared to evaluate the 

accuracy of the CVFEM results.  The effect of 
mesh size, heat generation parameter ( α ), 
numerical scheme for integration of volumetric 
heat generation, and the mesh pattern on the 
accuracy of CVFEM results are reported. 

For structured mesh and 50=α , Figs. 
7(a) - 7(c) show the effect of mesh size on the 
CVFEM-OP and CVFEM-MP results.     The 
temperature contours obtained from the coarse 
mesh SM1 is worse than those from the fine 
mesh SM3 especially along the diagonal course 
from upper left to lower right of the plate.   The 
zigzag of contour lines in that area can be 
observed.  The area of wavy contours is large 
when the coarse mesh is used.   Therefore, the 
numerical accuracy can be improved by using 
small mesh size.     

For structured mesh and 100=α , the 
area of wavy contours is very small as 
demonstrated in Figs. 7(d) – 7(f).   The 
temperature gradient in this area is very high.  To 
obtain the same accuracy as the numerical 
results for 50=α , the required mesh size for 

100=α is smaller.      Another way that can be 
used to display the numerical error from 
numerical methods is the temperature profiles 
along s direction [4-5] as illustrated in Fig. 8.    
As seen in the Figs. 7 - 8, the CVFEM-MP results 
are more accurate than the CVFEM-OP results. 

The integration error of heat generation 
term from mid-point rule of traditional FVM can be 
successfully reduced by using the CVFEM-MP.   
Fig. 9 shows that this concept can be applied with 
unstructured mesh. The errors of CVFEM-OP and 
CVFEM-MP results are summarized in Table 2.  
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(d)  (e)  (f)  

Fig. 7 Effect of mesh size and α on the CVFEM 
results with structured mesh (a) SM1, 50=α , (b) 
SM2, 50=α , (c) SM3, 50=α , (d) SM4, 100=α , 
(e) SM5, 100=α ,and (f) SM6, 100=α  
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(e)  (f)  

Fig. 8 Temperature distribution along s coordinate 
with structured mesh (a) SM1, 50=α , (b) SM2, 

50=α , (c) SM3, 50=α , (d) SM4, 100=α , (e) SM5, 
100=α ,and (f) SM6, 100=α  
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Fig. 9 Effect of mesh size and α on the CVFEM 
results with unstructured mesh (a) USM1, 50=α , 
(b) USM2, 50=α , (c) USM3, 50=α , (d) USM4, 

100=α , (e) USM5, 100=α ,and (f) USM6, 100=α  
 
Table 2 Error of numerical results  

α  Mesh ECVFEM-OP ECVFEM-MP 
50 SM1 22.13% 5.31% 

SM2 12.16% 2.99% 
SM3 1.02% 0.24% 

USM1 2.03% 0.64% 
USM2 1.13% 0.46% 
USM3 0.47% 0.23% 

100 SM4 70.39% 16.45% 
SM5 45.19% 10.94% 
SM6 1.05% 0.34% 

USM4 1.47% 0.30% 
USM5 0.47% 0.22% 
USM6 0.37% 0.19% 

 
5. Conclusions 

The finite volume analysis for steady heat 
conduction in a square plate subjected to non-
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uniform volumetric heat generation is performed.  
The method employed here based on the concept 
of control volume finite element method and the 
multiple-point integration for the heat generation 
term of heat conduction equation called CVFEM-
MP.   The effect of mesh size, heat generation 
parameter, mesh pattern and the numerical 
integration scheme on the temperature 
distribution in the plate are defined.   CVFEM-MP 
results are better than CVFEM with the one-point 
integration for the heat generation term (CVFEM-
OP) in all cases of interest.     CVFEM-MP 
results converge to the analytical results with 
small number of nodes.  Furthermore, the 
calculations on unstructured mesh give more 
accurate results than the calculations on 
structured mesh. 
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