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Abstract 

The finite element method for two-dimensional high-speed 
flow-structure interaction is presented. The adaptive cell-centered 
finite element method was used to solve the Navier-Stokes 
equations for high-speed flow analysis. The Galerkin method was 
then used to develop the finite element equations for analyses of 
the transient heat transfer and the structural response from the 
energy equation and the equilibrium equations, respectively. 
Finally, the coupled high-speed flow-structure problem was used 
to demonstrate the effectiveness of the proposed finite element 
method for predicting interdisciplinary fluid-thermal-structural 
interaction phenomena. 
 
1. Introduction 

Design of high-speed flight vehicles requires accurate 
prediction of flow phenomena, aerodynamic heating rates on the 
structural surfaces, structural temperature and their gradients, as 
well as structural deformations and stresses.  High-speed flow 
phenomena normally include complex flow characteristics, such 
as shock waves, shock-shock interactions, thin boundary layers 
and shock-boundary layer interactions [1,2].  Some of these 
characteristics especially near the structural surface, generate 
aerothermal load through vehicle structure and normally affect the 
structural temperature, deformation and stress.  In a few second, 
structural temperatures begin to rise and significant deformations 
occur.  In addition, the deformed structure can alter high-speed 
flow behavior and thus the aerothermal loads.  These coupled 
effects indicate that the analysis of high-speed flow-structure 
interaction [3] is an important consideration for high-speed vehicle 
design. 

In this paper, an integrated flow, thermal, and structural 
analysis approach for predicting each disciplinary behavior and 
their interactions is presented.  For high-speed compressible flow, 
the cell-centered finite element method is combined with the 
adaptive meshing technique [4,6] to solve the Navier-Stokes 

equations.  Based on the solution obtained from the previous 
mesh, the adaptive meshing technique generates an entirely new 
mesh that consists of small elements in the regions with large 
change in solution gradients and large elements in the other 
regions where the change in solution gradients are small.  The 
combined technique is used to improve the efficiency of the finite-
element flow solution and the aerothermal loads, as well as to 
reduce the computational time and the computer memory.  The 
Galerkin finite element method is applied to solve the structural 
energy equation for temperature distribution and the structural 
equations for deformations and stresses.  The paper starts by 
explaining the theoretical formulation of high-speed compressible 
flow, structural heat transfer, and structural response.  Then the 
solution procedure for flow-thermal-structural interaction problem 
is presented.  Finally, the integrated approach is evaluated by 
analyzing the application of Mach 10 flow over an inclined plate. 
 
2. Theoretical Formulation 
2.1  Governing Differential Equations  

The equations for the high-speed compressible flow, the 
structural heat transfer, and the structural analysis in two 
dimensions are described below. 

 
2.1.1 High-speed compressible flow 

The equations for high-speed viscous compressible flow are 
represented by the conservation of mass, momentums, and 
energy.  These equations are written in the conservation form [7] 
as, 
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where the subscript F denotes the fluid analysis. The vector 
{ }FU  contains the fluid conservation variables defined by, 
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where ρ is the fluid density, u and v are the velocity components 
in the x and y directions, respectively, and ε is the total energy. 
The vectors { }FE  and { }FF  consist of the flux components in 
the x and y directions, respectively.  These flux vectors are given 
by, 
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The subscripts I and V represent the inviscid and viscous flux 
vector components, respectively.  In the inviscid flux components, 
the pressure p is related to the total energy assuming a 
calorically perfect gas.  In the viscous flux components, the 
stresses xσ , yσ , and xyτ  are related to the velocity gradients 
assuming the Stokes’ hypothesis [8]. 
 
2.1.2 Structural heat transfer 

The thermal response of the structure is described by the 
energy equation in the conservation form as, 
 

         ( )TU
t∂
∂  + ( )TE

x∂
∂  + ( )TF

y∂
∂    =   ( )TG               (5) 

 
where the subscript T denotes the structural heat transfer 
analysis. The vector UT contains the thermal conservation 
variable defined by, 
 
                                    TU    =   cTρ                            (6) 
 
where c is the specific heat of structure, TG  is the heat source 
and the heat flux components TE  and TF  are, 
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2.1.3 Structural response 

The structural response is governed by the quasi-static 
equilibrium equations given by, 
 

                    { }SE
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where the subscript S denotes the structural analysis.  The flux 
vector components { }SE  and { }SF  are, 
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where the stress components xσ , yσ , and xyτ  are related to 
the strain and the temperature by the generalized Hook’s law [5]. 
 
2.2  Finite Element Formulation  

The cell-centered finite element method is applied to the 
Navier-Stokes equations to derive the finite element equations.  
The Galerkin finite element approach is applied to the structural 
heat transfer equation and the equilibrium equations to derive the 
corresponding finite element equations.  The derivation 
procedures are briefly described below, 
 
2.2.1 Finite-element flow equations 

The method of weighted residuals [9] is applied to Eq. (1), 
over the element domain, Ω, by using unit interpolation function 
as, 
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The Gauss divergence theorem is then applied to the flux integral 
terms of Eq. (12) to yield, 
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where the flux vectors { }IG  and { }VG  are the inviscid and 
viscous flux vectors of { }II FE +  and { }VV FE + , respectively, 
and n̂  is the unit vector normal to the element boundary eΓ .  
Equation (13) is evaluated by summing the normal fluxes from all 
the sides, eΓ , of the element.  The fluxes normal to the element 
sides are then approximated by the numerical inviscid and 
viscous fluxes, { }IG and { }VG , which are the average quantities 
normal to the element sides, i.e., 
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where Sδ  is the length of element side being considered as 
shown in Fig. 1, and the summation is performed for all the sides. 
       By substituting Eq. (14) into Eqs. (13) and (12), then 
applying an explicit time marching algorithm [7], Eq. (12) 
becomes, 
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where { } 1n

FU +  and { }n
FU  are the conservation variables at 

time steps n+1 and n, respectively, ∆t is the time step, and A e is 
the element area. 
       The basic concept behind the cell-centered finite element 
method used in this paper is to determine the flux across element 
interfaces by Roe’s averaging procedure [6].  The average 
inviscid flux { }IG  is given by, 
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where the superscripts L and R denote the left and right 
elements, respectively.  The last term in Eq. (16) may be viewed 
as artificial diffusion needed for solution stability.  This diffusion is 
represented by the product of the Jacobian matrix [ ]*A  and the 
difference between the left and right element conservation 
variables { }L

FU  and { }R
FU . 

       By substituting Eq. (16) into Eq. (15), the increments of the 
conservation variables, { }FU∆  = { } 1n

FU +  – { }n
FU , can be 

computed explicitly from, 
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2.2.2 Finite-element structural heat transfer equations 
The method of weighted residuals is applied to Eq. (5), over 

the element domain, Ω, by assuming a linear distribution of the 
conservation variable UT, and the flux components ET and FT in 
the form, 
 
               ( )z,y,xU T   =    { })t(U)y,x(N T                   (18a) 
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where  )y,x(N  is the linear interpolation function matrix.  The 
finite element equations can then be derived in the form, 
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where [ ]M  is the mass matrix, { } 1n
TU +

∆  = { } 1n
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TU  
at time n+1.  The { }n

1TR  and { }n
2TR  vectors are associated with 

the thermal fluxes within element and across element boundary, 
respectively, and are given by, 
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2.2.3 Finite-element structural equations 

The Galerkin finite element method is applied to Eq. (9) in 
the same fashion as in the structural heat transfer analysis.  The 
finite element equations can also be derived in the form, 
 

                    [ ]{ }SUK    =   { }SR  + { }TR                       (22) 
 

where [ ]K  is the stiffness matrix, { }SU  is the nodal 
displacement vector, { }SR  is the external load vector and { }TR  
is the thermal load vector.  These matrices are defined by, 
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where [ ]B  is the strain-interpolation matrix, [ ]C  is the elastic 
modulus matrix, { rSF  is the surface traction matrix, α is the 
thermal expansion coefficient, and To is the reference 
temperature for zero stress state. 



2.3  Solution sequence 
The solution sequence developed for fluid-thermal-structural 

analysis in this paper is based on the fact that the high-speed 
flow approaches steady-state condition in a much shorter time 
than that required for the thermal and structural response of 
structure.  Typically, heating rates approach steady state in about 
a millisecond.  At this time, the structural configuration remains 
undeformed at temperatures only slightly higher than the initial 
temperature.  After a few second, structural temperatures begin 
to rise appreciably and significant deformation may occur.  At this 
time, thermal and deformation coupling effects alter the flow field.  
The coupling effects continue to alter the flow and structure 
behavior until the structure reaches thermal equilibrium. 

Based on the above sequence of events, the analysis 
procedure of high-speed flow-structure interaction consists of the 
solution sequence as described by Fig. 3.  At the initial time, t = 
0, the adaptive cell-centered finite element method is first used to 
predict the high-speed flow behavior as denoted by FA.  The flow 
analysis generates aerothermal loads that include heating rate 
and pressure along the structural surface.  After a short interval 
of time at t = t1, the predicted aerodynamic heating rate is applied 
to the structural configuration and structural heat transfer analysis 
as denoted by TA is used to solve for the structural temperature. 
Both the structural temperature and the fluid pressure are then 
used to predict the structural response for deformations and 
stresses as denoted by SA.  The same sequence is repeated to 
predict the new flow field behavior, the aerothermal loads, the 
structural temperature, as well as the new structural deformation 
and stress. 
 
3.  Adaptive meshing technique 

The idea behind the adaptive meshing technique presented 
herein is to construct a new mesh based on the solution obtained 
from the previous mesh.  The new mesh will consist small 
elements in the regions with large change in solution gradients 
and large elements in the other regions where the change in 
solution gradients is small.  For brevity, description the adaptive 
meshing technique is omitted herein, but detail can be found in 
Refs. [4]. 
 
4.  Application 

The capability and efficiency of the method for high-speed 
flow-structure interaction analysis are evaluated by Mach 10 flow 
over an inclined plate.   
 
 

4.1  Mach 10 flow over an inclined plate: 
The problem statement of a Mach 10 flow over a 20O 

inclined panel is illustrated in Fig. 4(a).  The flow enters 
horizontally through the left boundary of the computational fluid 
domain and creates an oblique shock wave as highlighted in the 
figure.  The figure illustrates the plate supported by the panel in 
an initial flat configuration being heated at time t = 0 by high-
speed flow.  The bottom surface of the panel is assumed 
perfectly insulated and the top surface is applied by aerodynamic 
heating rate as illustrated in Fig. 4(b).  The panel is constraint on 
the bottom corners at x = 0.1 and 0.2 m. as shown in Fig. 4(c).  
For these boundary conditions, the panel deforms into a convex 
shape after being heated as highlighted in the figure. 

The flow-thermal-structural interaction for the inclined plate 
was analyzed using the solution sequence shown in Fig. 3.  At 
the initial time, t = 0 second, the flow field behavior is predicted 
by using the cell-centered finite element method.  Based on the 
flow solution obtained from a previous mesh, the adaptive 
meshing technique as described in the preceding section is then 
applied to obtain the optimized mesh as shown in Fig. 5 (a).  
Small elements are automatically generated along the shock line 
to capture sharp shock resolution and large elements are 
generated in the other regions where the flow is uniform.  The 
total of 10,611 triangular elements are generated in the inviscid 
region and 5,050 quadrilateral elements are generated in the 
boundary layer.  Ten graded layers of quadrilateral elements are 
used in the boundary layer to capture steep temperature 
gradients for accurate aerodynamic heating rate prediction.  
Typical flow solution from this adaptive mesh in form of the 
density contours is presented in Fig. 5 (b) indicating good shock 
and boundary layer resolution.  The structural heat transfer 
analysis is used to predict the temperature distribution at t = 250 
seconds on the panel.  At the same time, the quasi-static 
structural analysis is applied to compute the structural 
deformation from both the pressure and the thermal load.  The 
panel deforms into the stream, altering the flow significantly by 
introducing local shocks, expansion regions, and shock boundary-
layer interactions.  The computational fluid domain is then 
updated by the deformed structural boundary.  The flow field 
behavior of the new fluid domain is again predicted by using the 
cell-centered finite element method.  The adaptive meshing 
technique is then applied to generate the optimized mesh as 
shown in Fig. 6 (a).  The adaptive mesh consists of 11,278 
triangular elements and 1,910 quadrilateral elements.  The shock 
pattern is altered by convex deformation of constraint panel and 
small clustered element is automatically generated to capture the 



shock line.  Ten graded layers of quadrilateral elements are again 
used in the boundary layer to provide accurate aerodynamic 
heating rate.  The predicted density distribution is obtained as 
shown in Fig. 6 (b) with curved shock altered by the deformed 
panel.  Figure 7 shows the comparison of the aerodynamic 
heating rates along the entire plate length at time t = 0 and 250 
seconds.  Figure 8 shows the predicted pressure distributions 
along the entire plate length at the same times.  These figures 
show the deformed structure can significantly alter the flow field, 
and thus the aerodynamic heating rate and pressure load. 
 
5.  Concluding Remarks 

The adaptive finite element method for flow-structure 
interaction is presented to analyze the coupled behavior of high-
speed compressible flow, structural heat transfer, and structural 
response.  The finite element method based on a cell-centered 
algorithm is used to predict the high-speed compressible flow 
behavior.  The method is then combined with the adaptive 
meshing technique to improve the flow accuracy.  The technique 
generates an entirely new mesh based on solution obtained from 
the previous mesh.  The new mesh consists of the clustered 
elements in the region with large change in the solution gradients 
to provide the high accuracy and large elements are generated in 
the other regions to minimize the computational time and 
computer memory.  The Galerkin finite element method is used to 
predict the structural heat transfer and structural response 
behaviors.  The finite element formulation and computational 
procedure are presented.  Mach 10 flow over an inclined plate 
was studied to assess the capability and efficiency of the 
proposed procedure.  The application demonstrates that the 
proposed procedure can provide analysis solution accuracy and 
computational efficiency for predicting complex flow-thermal-
structural behavior of the fluid-structure interaction problems. 
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          Fig. 1 – The side length, δS, between the left   
                      element  L  and right element  R .    
 
 
 
 
 
 
 
 

Fig. 2 – Node K is surrounded by a number of elements. 
 
 
 
 
 
 
 
 
 
 
 
 
    Fig. 3 – Solution sequence of flow-structure interaction for 

high-speed flow over a flat plate. 
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Fig. 4 – Mach 10 flow over an inclined plate. 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  Adaptive mesh 
 
 
 
 
 
 
 
 
 
 
 
 

(b)  Density distribution 
 

    Fig. 5 – Adaptive mesh and corresponding density contours 
(kg/m3) for Mach 10 flow over an inclined plate at  
initial time. 

 
 

 
 
 
 
 
 
 
 
 

 
(a)  Adaptive mesh 

 

 
 
 
 
 
 
 
 
 
 

(b)  Density distribution 
 

     Fig. 6 – Adaptive mesh and corresponding density contours 
(kg/m3) for Mach 10 flow over an inclined plate 
with convex deformation. 

 

 
 
 
 
 
 
 

 

Fig. 7 – Comparative heat flux distributions for Mach 10 flow over 
 the undeformed and deformed panel. 

 

 
 
 
 
 
 
 
 

 Fig. 8 – Comparative pressure distributions for Mach 10 flow  
  over the undeformed and deformed panel. 
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