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Abstract  
In this paper, a simple technique to prevent checkerboard 

problem in topology optimisation is presented. The technique is 
employed along with Simulated Annealing (SA) the universal 
optimisation method. The objective function used in SA search 
strategy is obtained from the weighted sum of structural weight, 
compliance and checkerboard penalty. The developed design 
approach is implemented on two design case studies. The 
influence of weighting factors on the obtained optimum results is 
illustrated. 

 
1. Introduction 

In structural design process, topology optimisation is said to 
be a powerful tool in responding to the need to seek a better 
structural configuration. To design a structure for a particular 
propose, one may need to know what his structure should look like 
at the preliminary stage as illustrated in Figure 1. The classical 
design problem of topology optimisation is to find structural form 
such that minimizing its compliance whilst fulfilling predefined 
criterion e.g. mass and equilibrium constraints [1]. Apart from 
compliance or system strain energy, many designers have used 
other structural characteristics, such as natural frequency, as an 
objective function [2&3]. Design constraints may include natural 
frequency, buckling factor [4] and stress criterion [5]. In numerical 
point of view, by the use of Finite Element Method (FEM) for 
structural analysis, topology optimum design can be performed by 
discretising a structure into a number of connected finite elements. 
Design variables determine the distribution of element thickness, 
which means that elements with nearly zero – thickness represent 
holes on the structure whereas other elements indicate the 
existence of structural material. Figure 2 shows how element 
thickness distribution of a structural finite element model be 
converted to a structural configuration. Aside from element 
thickness, topology design variables can also be thought of as 
element density and modulus of elasticity [6].  

The most traditionally used optimisation method for topology 
design is Optimality Criteria Method (OCM) [7] as it is arguably the 
most powerful method for this task. However, some may still fancy 
using classical gradient-based optimisation methods like Sequential 
Linear Programming (SLP) [8] and the Method of Moving 
Asymptotes (MMA) [9]. Moreover, random – directed optimisation 
methods e.g. Genetic Algorithms (GA) and Simulated Annealing 
(SA) have also been implemented on this type of design problem 
[10&11]. Despite the capability of reaching a global optimum of GA 
and SA, the methods seem to lose their attraction when used in 
topology design because they are time consuming and have no 
consistency. This is due to the large number of topological design 
variables. Nevertheless, these renowned universal optimisation 
methods cannot be overlooked due to their ease to use. Probably, 
they could be the tool to break the barrier of traditional design 
approach in the future. 

Checkerboard along with mesh dependency and local 
optimum are inevitable problems in performing topology 
optimisation. Mesh dependency describes the various optimal 
results from different grid densities on one design domain. The 
local optimum, as we know, can result in the less effective design. 
Checkerboard patterns usually occur on an optimum structure 
particularly when using four – node quadrilateral membrane 
element for compliance minimisation. It has been recognised that 
such patterns come from numerical instability as shown in [1]. 
More importantly, it can lead to a so-called 1-node connected 
hinge problem in compliance mechanism synthesis [12]. Since the 
problem was stated, there have been several ways developed to 
alleviate the checkerboard patterns. The filtering technique as used 
in image processing [7&9], defining checkerboard constraint 
function [12], perimeter control method [13], using higher order 
finite element formulation e.g. 8-node quadrilateral membrane [6], 
and the use of nodal thickness as design variables instead of 
element thickness (known as Q4/Q4 strategy) [14].   
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This paper presents a simple technique to suppress a 
checkerboard pattern in topology optimisation. The technique is 
developed to be employed with simulated annealing method with 
binary string representing structures. The optimisation problem is 
solved by means of multi-objective optimisation using weighted 
sum technique. In this search strategy, checkerboard problem can 
be prevented by taking checkerboard penalty for a structure as one 
of the objective functions. A number of topology optimisation of 
plate structures are assigned and solved using the developed 
technique. With a variety of weighting factor sets, the optimum 
solutions are obtained and compared. The influence of weighting 
factors on the optimum results is shown. It is eventually illustrated 
that the present design can effectively perform a checkerboard free 
topology optimisation. 

 

 
 
Figure 1 Structural conceptual design 
 

 
 
Figure 2 Discretised design domain 
 
 
 
 

 
Figure 3 Structures with and without checkerboard form 
 

2. Simulated Annealing 
Simulated annealing is among the most popular random – 

directed methods like Genetic Algorithm (GA) and Evolutionary 
Programming (EP). The method is based upon mimicking the 
random behaviour of molecules during the annealing process, 
which involves slow cooling from a high temperature [15]. As the 
temperature cools, the atoms line themselves up and form a 
crystal, which is the state of minimum energy in the system. 
However, if the metal is cooled too quickly, the minimum energy 
state is not reached. The basic algorithm follows and is usually 
formulated as a minimisation problem. 

The search procedure of SA is to start with a single initial 
solution with fitness f is taken and then adjusted in some manner 
to produce a candidate solution with fitness f′. If f′ < f, then f′ is 
taken onto the next iteration, however, in cases that f′ > f, the 
candidate value may still be chosen depending upon the 
Boltzmann probability  

 
Tffe /)(Pr −′=     (1) 

 
where T is the annealing temperature. 
The simple algorithm of SA is shown Figure 4. The key role 

of SA search is that the discovery of a new candidate. As 
traditionally SA is the method without using derivatives, the 
candidate is created, by mutating on a current solution. The more 
effective procedure is that creating a set of new candidates and 
then selecting the best of them to be compared with their parent 
[16]. 

As being a universal method, any aspect of design variables 
can be used in SA. For this work, topology of a structure is 
represented by binary string ‘1’ for material existence and ‘0’ for 
holes as shown in Figure 5. Also note that in this paper ‘1’ means 
1 unit of thickness. A bit ‘0’ represents 0.000001 unit of thickness 
in stead of zero-thickness so as to prevent singularity in global 
stiffness matrix of structural system. 
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Figure 4 Flowchart of SA 

 
Figure 5 Binary strings representing a structure 
 

3. Dealing with Checkerboard Patterns 
In order to ease in explanation and computation, design of 

plate structures is used for demonstration of the technique 
whereas the design domain is rectangular as shown in Figure 6. 
The idea of preventing checkerboard here is the modification of 
that presented in [12]. Let the structure in Figure 6 have m+1×n+1 
elements. Thus, there are m×n interior nodes as shown and, at 
each interior node, there are 4 elements surrounding it. If the 4-
element pattern matches any of the two cases in Figure 7, the 
local checkerboard penalty value is one, otherwise, it is zero. 
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The total checkerboard penalty value, C, of a typical structure 
can be computed as 

∑
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It can be easily concluded that C = 0 represents a topology 
without checkerboard or even a 1-node connected hint and this is 
the minimum point of the penalty function. The important 
parameters in the design are checkerboard penalty C, structural 
weight Ms and system compliance Ve that is computed from FEA. 
The new objective function of the optimisation problem, which is 
the weighted sum of the three design parameters, can be written 
as a function of binary string B as 

 CwMwVwf se 321)( ++=B   (4) 
where w1, w2 and w3 are the weighting factors for 

compliance, weight and checkerboard penalty respectively. 
Note that the idea of using multi-objective optimisation 

technique in dealing with topology optimisation with the like of GA 
or SA is not unfamiliar by many researchers as it has been 
successfully implemented in [10] and [11].  

 
Figure 6 Discretised structural model 
 

 
Figure 7 4-Element patterns to be penalised 
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4. Numerical Examples 
Two topological optimisation problems that are the design of 

a classical MBB beam and cantilever beam are solved using the 
present method. The beams are show in Figure 8 and Figure 9. 
The beams are intuitively discretised as 20×10 elements for the 
MBB beam and 20×21 elements for the other. Both structures are 
optimised by using SA with 500 iterations, 20 candidates being 
created at each loop, initial annealing temperature 10 and the final 
temperature 0.001.  

With a variety set of weighting factors {w1, w2, w3}, the 
optimisation are then solved and the optimum results were 
obtained and illustrated. Figure 10 displays the optimum topologies 
of the MBB beam without checkerboard penalisation (w3 = 0). The 
results in (a), (b), (c) and (d) belong to the weighting sets [0.5,1,0], 
[1,1,0], [1,5,0] and [0.5,5,0] respectively. The results, as expected, 
show no escape from being checkerboard topologies. 

 
Figure 8 Design of an MBB beam 

 
Figure 9 Design of a cantilever beam 
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(c)   (d) 
Figure 10 Optimum results of the MBB beam without 

checkerboard penalty 
 
 The more interesting optimum results are shown in 

Figure 11 for the MBB beam and Figure 12 for the cantilever 
beam. The sets of weighting factors that correspond to figures (a) 
to (p) are given in Table 1. The results of these two beams show 
that the strong penalty (w3 = 5) can perfectly suppress 
checkerboards. However, the obtained topologies are unlikely to be 
realisable since they still need some refinement from the stage of 
shape and sizing optimisation. 

 
Fig. w1,w2,w3 Fig. w1,w2,w3 
a 0.5,0.5,5 i 1,1,0.5 
b 0.5,1,0.5 j 1,1,1 
c 0.5,1,1 k 1,1,5 
d 0.5,1,5 l 1,5,0.5 
e 0.5,5,0.5 m 1,5,1 
f 0.5,5,1 n 1,5,5 
g 0.5,5,5 o 5,5,0.5 
h 1,0.5,0.5 p 5,5,1 
Table 1 Weighting factors 

 
(a)   (b) 

 
(c)   (d) 

 
(e)   (f) 

 
(g)   (h) 

? 

? 



 
(i)   (j) 

 
(k)   (l) 

 
(m)   (n) 

 
(o)   (p) 
 
Figure 11 Optimum results of the MBB beam with 

checkerboard penalty 
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Figure 12 Optimum results of the cantilever beam with 

checkerboard penalty 
 

5. Conclusion 
The present design strategy can prevent the formation 

checkerboard patterns if the proper set of weighting factors is 
used. It also shows that SA is a powerful tool for topology 
optimisation. The weighted sum technique is acceptable for the 
task. The extension of this concept to 3D topology optimum design 
is possible. Computation time is still far from matching the OCM. 
More work has to be made so that the convergence rate of the 
design approach is enhanced. 
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