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Abstract 
The online computation algorithm is virtual need for 

implementation in modern digital controller. In this paper the new 
on-line area based computation algorithm for first-order plus 
dead-time model system identification drive from linear 
monotonic process step response is presented. The estimated 
parameter from this algorithm is properly fitted with the ideal 
model. Although there are large amounts of measurement noise 
presented, the parameter estimation error is fairy small, 
according to the inherent characteristics of the area-based 
method. The effectiveness has been proven through a large 
number of simulation tests. 
 
1. Introduction 

The process characteristics must be known before the 
appropriate controller tuning. So the system identification is 
performed when the analytical model is not available or not 
reliable. The estimate model of process can be obtained by 
using the experimental data. There are several testing methods, 
such as step, pulse, pseudo-random binary sequence, sinusoidal  
or relay feedback tests [1]. Among the several testing methods, 
the step test is the most widely accepted as the standard tool for 
process control engineer. The step testing can be easily 
implemented on microprocessor-based controller such as 
programmable logic controllers (PLC), distributed control 
systems (DCS), even the single loop controller. 

The monotonic process that normally face in area of 
chemical process, water and waste and HVAC is sufficiently 
described the relation between response Y(s) and input U(s) by 
the parametric model of first-order plus dead-time models 
(FOPDT).  
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The model has three characteristic parameters to find. The 

static gain (K) is normally determined by the steady-state level of 
the process output. The other two parameters, Astrom and 
Hagglund [1] proposed the graphical method to find the time 
constant (T) and the dead time (L) of the process. But the 
accuracy of this method is depending on the drawing of the line 
tangent to the process reaction curve at the point of maximum 
rate of change. To eliminate this dependency on the tangent 
line, Smith [2] proposed that the values of the L and T be 
selected such that the model and actual response coincide at 
two points in the region of high rate of change. The two points 
recommended are (L + T/3) and (L + T).  That is the time at 
which the process output reaches 28% of K and 63% of K.  

However all of graphical-based methods have to share the 
same drawback. It is quite sensitive to large measurement noise. 
The area-based methods may have better estimation robustness 
[1]. In this method the static gain K is obtained as before, while 
L and T are measured by using the area Ao and the average 
residence time Tar shown in Fig. 1 
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Fig. 1. Area method for a monotonic step response 



The average residence time Tar is computed from the area 
Ao in Fig. 1 as 
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The area A1 under the step response up to time Tar is also 

measured. Then T and L can be estimated as 
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This method is attractive because of the inherent 

characteristics of area-based orient, that take the whole range of 
data to calculate the area under the process reaction curve. For 
this reason, this method is less sensitive to high-frequency noise 
than the previous graphical-based method, that takes only a few 
data point to estimate the model parameters. 

Nonetheless, this method still have some disadvantage. 
From the above equations (2), (3) it is obvious that estimation 
accuracy is mainly dependent on the area Ao. In order to 
achieve an accurate Ao, the testing process must be wait until 
the response completely enter the new steady state. 

To reduce the testing time. Qiang Bi et al. [5] proposed an 
instrumental variable least-squares for the area-based method. 
Using a new set of linear regression equations, it is not 
necessary to wait for process response to settle at new steady 
state value. As a consequence, the testing time is drastically 
reduced. 

However the on-line computation algorithm have not been 
presented. Therefore, this paper presents a novel on-line 
algorithm which can be implemented on a digital computer and a 
microprocessor-based controller. 

In section 2, off-line computation algorithm based on the 
area method drived from the linear regression equation with the 
instrumental variable least square (IV-LS) is revised. Section 3 
presents the new on-line computation algorithm based on off-line 
IV-LS. In section 4, the effectiveness and the numerical stability 
of estimated parameters are shown by simulation results. 
Conclusions are given in section 5. 

 
 
 

2. Area-based off-line computation method 
Assuming that an example process is in zero initial steady 

state. The step input u(t) with amplitude of h is applied at t=0. 
The output response y(t) is recorded untill the process reach the 
new steady state condition. For a monotonic process described 
by equation (1), the response y(t) after t ≥ L is expressed by 
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where w(t) is measurement noise, assumed to be white noise. 
Equation (4) can be rewritten as  
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Integrating y(t) in equation (4) from t = 0 to t = τ (τ ≥ L) 
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Since y(L) = 0, equation (5) can be written as  
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Then, equation (4) can be written as 
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 or in matrix form 
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At each sampling of y(τ) where τ  ≥ L, the system of linear 

equation is formed as 
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where Θ = [ K  LK  T]T, 
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where Ts is the sampling interval and mTs ≥ L. 

The parameters in equation (8) can be estimate by the least 
squares method as 
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Therefore, the K, T and L in equation (1) can be directly 

computed from equation (9). In the ideal situation with the 
absence of noise, equation (9) yield the true parameters. In the 
presence of a zero-mean uncorrelated noise (white noise) 
equation (9) still give good parameter estimation characteristics. 
However, if δ(τ) is a zero-mean correlated noise instead of 
white noise, equation (9) is biased. To achive higher accurate 
parameter estimation, the instrumental variable least-square 
method is introduced. The following conditions are applied to the 
instrumental matrix Z.  

First, the inverse of exists, and Second, 
, i.e.,Z and ∆ are uncorrelated. 

Ψ∞→
T
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There are so many solutions of Z. In this case, Z is chosen as 
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According to this instrumental matrix Z, the estimator of 
parameter in equation (8) is given by 
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3. Area-based on-line computation method 
3.1. Area based on-line least squares computation algorithm 

With no loss of generality, Ts can be assumed as one unit of 
time. The on-line computation algorithm for equation (9) is as 
fellow [3]. 
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Note that, lower case letter is for vector representation.  
Where.  and 1  is the estimated parameter 
column vector [K   LK   T]
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3)(ˆ xnθ
T at time (n+1) and at time 

(n), (ψ  is the observation vector [h(m+n) -h -y[m+n]]Tat 
time (n+1).  is the area under the output response at 
time (n+1), and  It can 
be seen that P(n) is a direct measure of the error covariance at 
each n. To avoid the difficulty of matrix inversion ,the matrix 
inversion lemma is applied [3]. Resulting in equation (12). 

 As shown in equation (11) is a scalar weight of the 
fitting error for the correction of next estimation. 
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3.2. Area-based on-line instrumental variable least squares 
computation algorithm 

The instrumental variable method is useful not only for 
removing bias in the parameter estimation when the residual in 
the system equation is autocorrelated but also yields consistent 
estimation.  

An on-line computation algorithm for equation (10) is as 
fellow [3]. 
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where, 

13)1(ˆ
xIV n +θ  and are the estimated parameter 

column vector [K   LK   T]
13)(ˆ

xIV nθ
T estimated by the IV-LS method at 

time (n+1) and at time (n). 13x)1(nz + is the instrumental vector 
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at time (n+1). Other variables can be found from equation (9). 
It is obvious that the different choices of Z yield the different 

efficiency of estimation. Nevertheless, in any case of Z, the 
efficiency is always inferior to the generalized least squares 
method [2]. However, for the simple implementation on a 
microprocessor- based controller, the IV-LS is chosen. 
 
4. Implementation and simulation testing 
4.1. Listening period 

The equation (7) is effective where τ ≥ L[5]. This means that 
the computation must begin after τ = L. That can be know by 
monitoring the measured signal and calculating noise band Bn at 
the zero initial steady state. Before the controller issues the step 
signal to actuator. After that the step signal is fed to actuator. 
When y(τ) satisfies the condition abs(y(τ)) > 2Bn , the 
computation is begun.  

 
4.2. Initial value of  θ̂

It is recommended by Hsia[3],  that is arbitrarily and 
P(0) = αI where α is a very large positive scalar and I is an 
identity matrix. This condition will force the  to coincide with 
the same result from the off-line method with the degree of 
freedom equal to the unknown parameter. This initial value gives 
the best first guess. And to improve the guessing value of initial 
condition, the equation (7) and the time that controller starts to 
log-on the measured signal L

)0(θ̂

θ̂

guess, can be used as the initial 
conditions. Then the initial values are  

[K(arbitrarily)      LguessK(arbitrarily)    T(arbitrarily)]T 
 

4.3 Asymptotic properties of recursive identification methods 
The asymptotic properties of recursive on-line algorithms are 

the same as those of  corresponding off-line method [4]. This 
means that as long as the conditions in equation (9) and (10) 
are hold, the on-line algorithms will give the same result as the 
off-line method, when the iteration is approach to infinity.   
 
4.4 Filtering 

It is a common practice to band-pass filter the signal before 
introducing them into the algorithm to get rid of static levels and 
high frequency disturbances [1].  

 
4.5 Simulation test 

Supposing that the parameters of the first-order plus dead-
time models in equation (1) are K = 4.2, L = 60, T = 360. Or in 
matrix form [4.2 (60)4.2 360 ]T, the ideal model is 
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The noise is modeled as a white noise with variance one 
scaled by 0.2, which makes the noise-to-signal ratio (NSR ) of 
30% approximately.The outcome of noise generator is ploted in 
Figure 2. 
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Fig. 2. Noise outcome from noise generator. 

 
A noisy response is generated by superimposeing the noise 

to noise-free response from the ideal model. As shown below in 
Figure 3.  This noisy response is the input to test the developed 
algorithm.  
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Fig. 3. Noisy response for testing 



The area under the noisy response is shown in Figure 4. It 
should be noted that, the result of on-line integration of noisy 
response is nearly equal to the analytical calculation from the 
ideal model. 
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Fig.4.The area under response 

The estimator for (K) static process gain , (KL) static process 
gain multiply by dead-time and (T) time-constant, can be found 
at the steady state of estimator value as shown in the Figure 5, 
6, 7 respectively.  
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Fig.5. Dynamic of K estimator 
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Fig.6. Dynamic of KL estimator 
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Fig.7. Dynamic of T estimator 
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Fig.8. Comparison of the estimated with the ideal model 

 
By using the estimated parametor K = 4.3095, T = 369.5156, 

L = 62.3717. It can be shown that the responses of estimated 
model is almostly identical with the ideal model as shown are in 
Figure 8.   

This very good estimated parametor is found by using only 
317 iterations that is 75% less than the graphical method. 
 
4.6. Algorithm reliability  

To prove the reliability and the consistency of the algorithm, 
a great number of test is performed. After running more than 
1000 test. For this system, the statistical characteristics of the 
computed result are shown in tables 1. 

Table 1.Test run statistical characteristics. 
For [4.2  60(4.2)   360 ]T. 

Paramerters\Stat.Cha. Mean SD. 
Iteration 282.3510 80.1066 
Static gain (K) 4.3114 0.1922 
Dead time (L) 62.53 0.3032 
Time constant (T) 368.2306 19.5726 



 
The next two different FOPDT systems are tested. 
 

Table 2.Test run statistical characteristics. 
For [2.2  120(2.2)   1000 ]T. 

Paramerters\Stat.Cha. Mean SD. 
Iteration 524.3500 151.1365 
Static gain (K) 2.1292 0.2455 
Dead time (L) 119.3606 1.7775 
Time constant (T) 953.4169 123.4733 
 

Table 3.Test run statistical characteristics. 
For [6.2  80(6.2)   700 ]T. 

Paramerters\Stat.Cha. Mean SD. 
Iteration 346.262 95.9435 
Static gain (K) 6.2373 0.3425 
Dead time (L) 82.5620 0.3646 
Time constant (T) 700.6962 42.9921 

 
All test are converge to final steady state. The estimated 

value are good fix with the ideal model and with remarkable 
consistency throughout all test. 

 
5. Conclusions 

A new on-line IV-LS computation algorithm for FOPDT was 
developed. The main advantage of the appraoch are reduced 
the step testing time and on-line computation at the acceptable 
reliability. Because of the non-complex calculation, the method is 
available for a embeded hardware. Moreover, the initial condition 
were clearly expressed. The consistency and reliability were 
demonstrated by a great number of re-run simulations.  
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