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Abstract 
Circular tubes many have been widely used as structural 
members in engineering applications. Therefore, its’ 
collapse behavior has been studied for many decades, 
focusing on its energy absorption characteristics. This 
paper is also aimed to investigate the plastic collapse of 
circular tube subjected to axial compression. The study 
was carried out with experiments, analyticals and 
computer simulations. The experiment was conducted 
with a number of tubes having various D/t ratios. 
Theoretical analysis of the collapse was made using 
hinges line method. The problem was also investigated 
by computer simulation technique, using a commercial 
FE package (ABAQUS). Results from those three parts 
were compared. 
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Notation 
 
R initial (undeformed) tube radius 
t tube thickness 
l length of tube section 

extW  work of external forces 

intW  work of internal forces 

BW   internal work in bending at the circumferential 
plastic hinge 

sW  internal work for stretching plastic hinge 
α  angle of rotation of plastic hinge 
δ  vertical displacement of tube 
H  fold length 

mH  mean fold length 

P  force applied to the tube 

mP  mean crushing load 

oM  fully plastic bending moment per unit length of 
tube 

pM  bending of plastic hinge 

oσ  yield stress of the material 

yP  yield load 
 

1. Introduction 
 Circular tubs are widely used as structural members 
in offshore pipeline and platforms, land-based pipelines, 
support structure and energy absorbing devices. Many 
researches investigated the experiment and theoretical of 
circular tube subjected to static axial compression. 
Alexander [1] analysed the axisymmetric concertina 
mode (see Fig. 1(a)) of deformation by considering the 
formation of stationary hinges and assuming the tube 
length between the hinges as rigid. The region between 
the extreme hinges was assumed to buckle outward only. 
He obtained an expression for the fold length by 
minimizing the total energy due to the membrane strain 
and the plastic bending moments at the hinges. The 
investigation also proposed an equation for predicting the 
mean collapse load. Abramowicz and Jones [2] later 
modified Alexander’s model by introducing curvature in 
the deformation fold length, Fig 1 (b). They used ultimate 
stress instead of yield stress to account the strain 
hardening. Only the calculation of the collapsed load was 
addressed in their analysis. Wierzbricki and Bhat [3] 
employed a moving hinge mechanism starting from each 
end of the fold length. Grzwbieta and Murray [4] 
proposed a method to determine the load history between 
a peak and a minimum during an oscillation of the load 
compression curve. They assumed that the two curve 
regions are separated by a straight region where each 
region is one-third of the fold leg length, see Fig.1(c). In 
all these studies the fold formation was assumed to be 
outside    the mean radius of tube. Wiezbicki et.al. [5] 
studied the axisymmetric mode of deformation of round 
tubes by considering inward and outside folding radial 
displacement (Fig. 1(d)) according to the amount of 
internal folding. The loads – displacement history as well 
as the mean load were analysed. Singace et al. [6] 
analysed and developed Wierzbicki’s model [5].They 
introduced the derivation and discussion of the 
eccentricity factor of tube folding in concertina mode. 
The analysis agreed with the experimental observations.   
 In general two modes of deformation may be 
observed when circular tubes collapse, which include 
axisymmetric (also called concertina modes), see [Fig.1 
(a)] and non-symmetric (diamond mode). Andrew et al. 
[7] show that thick cylinders (small D/t ratio, D/t<80-90) 
buckle in the concertina mode of deformation, whereas 
thin cylinders (high D/t ratio) buckle in the diamond 
modes. The number of lobes increases with increasing of 
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D/t ratio. For a given tube, it was found that the absorbed 
energy is more important in the mode concertina than that 
in the diamond mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1. The plastic collapse mechanism of tube for 
concertina mode [1]-[4]. 
 
 In this paper an experimental and analytical study 
on the axial compression of circular steel tubes of varying 
D/t ratios under quasi – static loading are presented. This 
study focuses only on tubes deforming into concertina 
folds. The buckle was assumed to bend outward only. 
The elastic effect was neglected because the extensive 
plastic deformation and the plastic energy dissipated in 
the structure larger than three times the elastic energy of 
deformation [8]. The deformation process was simulated 
by using a commercial finite element code (ABAQUS). 
Results are then compared. 
 
2. Experiments set up 
 In this study, there were eighteen tubes of mild steel 
(yield tensile stress: 260 MPa) of different diameter to 
thickness ratios. The nominal diameter to thickness ratios 
were 25.5 from 63.73 as shown in Table1. The length of 
each specimen was 150 mm. The end condition of the 
tubes was simply supported. The experiments were 
conducted on ESH Universal Testing Machine of 200 ton 
capacity. The specimen was crushed axially with speed of 
10 mm/min. The force and corresponding displacement 
during tube crushing were recorded. The experimental 
setup is shown in Fig.2. 
 
Table 1 Specimen dimension 

Specimen 
label 

Average 
diameter D(mm) 

Thickness 
t(mm) D/t 

UB1 45.92 1.79 25.6 
UB2 57.42 1.82 31.55 
UB3 73.40 1.73 42.43 
UB4 85.80 1.72 49.79 
UB5 109.62 1.73 63.36 
UB6 110.75 2.26 49 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2. The test setup of circular tube by using the 
ESH Universal Testing Machine. 
  
3. Analytical model 

The folding mechanism of circular tubes was 
analyzed using hinge line method and followed the 
Alexander mode [1]. Mode of collapse mechanism was 
assumed axisymmetric (also called concertina type) 
folding. In this paper, the folding legs of tube were 
assumed to buckle outward only, as shown in fig 3. 

 The folding is facilitated by a kinematics 
mechanism with three circumferential plastic hinges. 
Plastic deformation is due to bending at the 
circumferential plastic hinges at A, B and C and hoop 
stretching of the regions between AB and BC, as show in 
fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The axisymmetic folding of tube under 

axial compression [1]. 
 
 Let the geometry of the fold at any instant is 

defined by the angle α. Axial shortening (of an initial 
height 2H) at the instant define by δ, is 

           )cos1(2 αδ −= H  (1) 
Axial velocity of A is 
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  ααδ && sin2HV ==   (2) 
Global energy balance of the load structure can be 

established by equating the external rate of work ( extW& ) 

with internal energy dissipation ( intW& ), hence 

 intWWext
&& =  (3) 

The rate of work of external forces extW& can be expressed 
as: 
  HPPW mext 2.== δ&&  (4) 

Where mP  is the mean crushing load and if we assume 

that the expression for mP  contains the fold length H2 . 

The rate of internal work of tube ( intW& ) is comprised of 

two parts. BW&  is the rate of work for bending at the 

circumferential plastic hinges at A, B and C and sW&  is 
the rate of work for stretching in AB and BC, so that; 
  sB WWW &&& +=int  (5) 
 Plastic bending at A, B and C: the rate at which 
energy is dissipated at the three hinges is 
               α&& )2( PCPBPAB MMMW ++=  (6) 
Denoting the fully plastic unit bending moment by 

4

2
0

0
t

M
σ

= , note that )2(0 APA RMM π= etc. Noting also 

that RRR cA ==  and that αsinHRRB += . Equation 
(6) can be rewritten as  
 

∫∫ ++=
2/

0
0

2/

0
0 )sin(2222

ππ

ααπαπ dHRMdRMWB
&

 )(4 0 HRM += ππ  (7) 
 Stretching in AB and BC: the expression of various 
sections is differential. A small length dx at a distance x  
from A (fig. 3) is at a radius αsinxR +  and has a 

strain 
R

x αε sin
= . Rate of work done for the plastic 

straining of the element dx  at a deformation rate ε&  is 
 )2()( 00 RtdxdVolumeWd s πεσεσ &&& ==  (8) 
Note that the incremental strain compare with α is 

  
R

x ααε
&

&
cos

=  

The total rate of work for stretching of AB and BC in this 
position is 

 ∫=
H

s R
xdxRtW

0
0

cos.)(22 αασπ
&&  (9) 

The total energy required for plastic expansion of ABC (x 
changes from 0 to H  and α changes from 0 to 2/π ) is 
obtained by integration as 

  )(8
2

0 t
HMWs π=      (10) 

Using equations (2) through (5), it can be seen that 

 ⎟
⎠
⎞

⎜
⎝
⎛ ++=

t
H

H
RMPm

212 0
ππ    (11) 

Mathematically, we get H from 0=
dH
dPm .This operation 

on equation (6), produces mHH =  

  
2

2 RtH m
π

=    (12) 

Using equations (5), (6) and (9), an expression for P is 
obtained as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= α

α
π

cos
2sin

4 2
0

t
HHR

H
M

P                     (13) 

 The author will use equation (13) to analyze the 
force – displacement response and compare with the 
results of the experiment and computer simulation. 
 
4. Computer simulation 
 The collapsed behavior of circular tubes was also 
numerically analyzed by a commercial finite element 
package (ABAQUS). The tube model was constructed 
with a number of 4 node shell elements. All geometry 
parameters were same as experimental specimens. The 
tube was crushed by two rigid platens in axial direction. 
The material was assumed homogeneous, isotropic, 
constant thickness and perfectly elastic-plastic. 
Coefficient of friction between platens and tubes surfaces 
was assume as 0.3 in order to prevent sliding at the end. 
The self contact of the inner and outer surfaces of the 
shell were assumed frictionless. Their deformation shapes 
were recorded at different stages of compression and 
load-displacement response were plotted and compared 
with the experiments and analyticals.  
  
5. Results and Discussions 
 This section presents the results of collapse 
behaviors of circular tubes for axisymmetric concertina 
mode.  

          
 
 
  
 
 
 
 
 
 
              
 

(a) 
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Figure 4. (a) Deformation process of a typical tube under 
axial compression, (b) load – displacement response of 
specimen No.UB5 at D/t =63.36 
 
 Fig.4 (a) demonstrates the deformation process of a 
typical tube (No. UB5) of mean diameter (D)= 109.62 
mm, thickness(t)=1.73 mm and initial height = 149.89 
mm. Its’ compression load – displacement response is 
shown in fig.4 (b). The deformed pattern of tube is called 
the axisymetric concertina mode. The collapse starts 
when a radial folding begins at bottom end surface. In the 
elastic region, the load increases continuously. The next 
stage, plastic deformation is dominant with increase of 
compression load and the folding is continuously 
increased. Since this region is reached the maximum 
compression load, the folding continues at decreasing 
load due to the lower rate of resistive moment of strain 
hardening. The final stage, the compression load start 
increasing again, due to the work - hardening and the load 
is reached the second maxima. The further folding is 
continuously progressed, which the number of 
experimental folding is corresponded with the number of 
loop of load – displacement response as shown in fig. 
4(b). The final folding stage is composed of five wrinkles 
at a downward distant 100 mm and theirs folding are the 
five loops of load–displacement response simultaneously.  
 An example result from finite element simulation is 
shown in fig. 5. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(a) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

 Figure 5. Results from finite element simulation (a) 
computed profile at different stages of collapse, (b) Finite 
element model load – displacement response of specimen 
No.UB5 
 
 Fig. 5(a) demonstrates the axisymmetric concertina 
mode of tube number UB.5 received from finite element 
simulation. The finite elements collapse process is similar 
to the experimental observation in Fig. 4(a). Another 
comparison between finite element and experimental 
observations is also presented in fig. 6(b) for a specimen 
number UB.6. This figure provides clear picture of 
initiation and progressive collapse in the first and second 
stages of ring formation.  
 It is observed that the collapse begins by creating an 
expansion ring near either top or bottom end of tube. 
After the first ring completed, the following ring is 
formed. The process repeats in this manner continuously 
until the collapse terminated. 
 Fig. 6(a) shows the comparison between load-
displacement obtained from finite element simulation and 
experiment of specimen number UB.5. The discussion on 
this graph will be present later. 

(a) 
 

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1

Lo
ad

(k
N

)

AMM017



 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  (b) 
 
 Figure 6 Comparison of experiment and finite 
element simulation (a) the load – displacement response 
for circular steel tube, No. UB5, (b) the deformation 
profile for differential stage of specimen No. UB6 having 
D/t = 49 
 The theoretical analysis of the plastic collapse of 
circular tube under axial compression load is given from 
equation (13).  After substituting all parameter, the load – 
displacement curve can be obtained as shown in Fig. 7 as 
an example   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The theoretical analysis of load – displacement 
response of specimen No. UB5 having D/t = 63.36. 
 . At the onset of the buckle, when 0=α , equation (13) 
gives the value of load as infinity. This is not true since 
the expression was derived based on plastic region only. 
Therefore this is equation cannot apply in the elastic 
zone. However there was a suggestion to use to 
approximate for the load in elastic zone as.  
  )2(0 RtPy πσ=  (14) 
So, the further analytical load-displacement curves will 
use equation (13) together with equation (14).  
 The results of the experiments and analytical are 
compared with the finite element simulation for different 
tubes, as shown in fig 8 (a, b, c, d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Specimen No.UB1 
 
 

 
 
 
 
 
 
 
 
 
 
   
  

(b) Specimen No. UB3 
 
 
 

 
 
 
 
 
 
 
 
 
 

(c) Specimen No. UB5 
 
 
 
 
 
 
 
 
 
 
 
 

  (d) Specimen No. UB6 
 Figure 8. Comparison of experimental, analytical 
and simulated load – displacement response. 
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 It can be seen from fig. 8 that the load – 
displacement curves of collapsed tubes fluctuate in a 
number of peaks. Each peak the formation of an 
axisymmetric ring. The curves obtained from finite 
element simulation are fluctuated in more loops and in 
higher magnitude compared to experiment. The analytical 
result gives curves with the same number and same 
position of peaks to the experiment. However, in general, 
the load-displacement curves from experiment, analytical 
and finite element simulation fluctuate in the same trend, 
especially specimens number UB1 and UB3. The 
discrepancy between each method may be attributed into 
the effect of friction between platens and tubes and the 
non-uniformity of thickness.  
6. Conclusions 
 The axial collapsed behavior of circular steel tube 
for differential D/t was studied. The result of load – 
displacement response and deformation shape from finite 
element simulation and analytical agree with 
experimental results quite well. It may be concluded that 
the simple analytical model can be used to approximate 
the collapse mechanism of concertina mode. This model 
can be helpful in the early design stage with a promised 
accuracy. 
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