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Abstract 
 A scaling law for vibration response of rectangular 
isotropic plates along with a similarity requirement was 
derived and verified by experiment method in this study. 
The scaling law was derived from the governing equation 
of the problem, and verified with the closed form 
solution. Besides theoretical verification, the experiment 
study was conducted on model and prototype specimens. 
A number of nine aluminum rectangular plates with SSSF 
boundary conditions were tested for natural frequencies 
using impact test method. Accelerometer and dynamic 
signal analyzer were employed to measure and analyze 
the vibration response of the specimens. Natural 
frequencies of the first three vibration modes were 
obtained by transforming the acceleration in time domain 
to that of the frequency domain. The natural frequencies 
of the models were substituted into the scaling law to 
obtain the scaling natural frequencies of the prototypes, 
which were compared to the measured natural 
frequencies. From a total of 9 comparisons, the average 
percent discrepancy of the scaling natural frequencies is 
0.25% with standard deviation of 6.4%. Natural 
frequencies of the prototype determined from both 
approaches agree with each other very well. The accuracy 
in this study is notably better that of the similar study on 
scaling law for buckling of plate. Thus, the derived 
scaling can be used in engineering applications, providing 
that the boundary conditions of the model and prototype 
are identical. 
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1. Introduction 
 The similitude concept has been utilized in many 
engineering applications. It is very helpful for engineers 
to be able to replicate the behavior of the prototype using 
the appropriate scaled model. The concept is also very 
powerful for problems with complicated boundary 
conditions where analytical or numerical solutions are not 
sufficiently accurate, if not impossible. Similitude theory 
can be stated as [1]; “the sufficient and necessary 
condition of similitude between two systems is that the 
mathematical model of the one be related by a bi-unique 
transformation to that of the other.” If parameters of the 
model and prototype have such similarity conditions, then 
the scaled replica can be built to duplicate the behaviors 
of the full-scaled system, and the results from the model 

experiments can be utilized to predict the behavior of the 
prototype.  
 The similitude theory have been applied to many 
problems in the field of structure engineering, especially 
vibration and buckling of plate problems which are in the 
interest of this study.  Simitses [2] applied similitude 
transformation to bending, buckling, and vibration of 
laminated plates. The derived scaling laws and 
appropriate similarity requirements were successfully 
employed to the problems. Rezaeepazhand et. al [3] 
demonstrated a procedure for deriving the scaling law for 
frequency response parameter utilizing the closed form 
solution. Another approach of employing the similitude 
transformation for stability and vibration of laminated 
rectangular plate problem is presented in Ref.[4-6]. In 
those studies, the similitude transformation was applied 
to the governing equations of the problem directly. The 
advantage of this approach is that the solutions of the 
governing equations are not required. The obtained 
scaling laws were verified with the theoretical solution 
and found to be exact for complete similitude cases. 
Partial similitude cases were also investigated and 
recommended. 
 Beside theoretical work, the scaling law was also 
verified by experiment method. Alanpitak [7] performed 
buckling experiment on composite plates and shown that 
the buckling scaling law was accurate in most of the 
model-prototype pairs. The average percent discrepancy 
between scaling and experimental buckling loads was –
5.9% with standard deviation of 8.7%. However, some 
pairs of model-prototype have percent discrepancy as 
high as 30% for complete similitude case. The uniformity 
of the specimens and the buckling load identification 
method load are cited as the probable causes of the 
discrepancy. 
 In this study, the scaling law for natural frequency 
of rectangular aluminum plates was derived and 
compared with the experiment results. It is an objective 
of this study to investigate the accuracy and repeatability 
of the scaling law and vibration measurement, and 
compare to the previous buckling problem study by 
Alanpitak [7] where the standard deviation of the percent 
discrepancy of the scaling buckling load is quite high. So, 
this study is intended to confirm that the scaling laws for 
structural problems are reliable and suitable to use in 
engineering application. Also, the experiment result from 
this study could indicate the accuracy of the natural 
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frequency measurement.    
 
2. Natural frequency of plate  
 The governing equation for vibration of isotropic 
rectangular thin plate can be written as [8]; 
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where W is the displacement in the out-of-plane direction, 
ρ is the mass density of the specimen, and D is the plate 
bending stiffness. 
 Assuming that the out-of-plane displacement is 
separable as a function of position and time, the 
governing equation is reduced to  
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where w is function of x and y only, i.e. w = w (x,y), and 
ω is the frequency of the vibration. 
 The vibration equation, eq. (2), can be solved if the 
boundary conditions of the plate are known. For simple-
supported plates, the analytical closed form solution is 
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where ωmn are natural frequency of the plate in Hz, a and 
b are plate width and length, respectively, h is specimen 
thickness, m and n are positive integer.  
 
3. Scaling law for vibration of plate 
 The scaling law for vibration of rectangular 
isotropic plates is derived from the governing equation, 
eq.(2) by comparing the governing equation for the 
model and prototype systems. From both equations, the 
similitude invariant term, which leads to the scaling law, 
is obtained. Let the variables of the prototype and their 
corresponding model variables be related to each other as 
follows, 
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where subscripted p refers to prototype and subscripted m 
refers to model, and Ci are the scaling factors of the i 
parameters. To derive the similitude invariant, the 
governing equations of the model and prototype are 
written as the following, 
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Comparing both equations, the vibration behavior of the 
model and prototype are similar if groups of the scaling 
factors in eq.(5) are all equal. This implies that eq.(5) can 
be reduced to eq.(4) when the scaling factor groups are 
canceled out. Thus, the similitude requirement is obtained 
as 
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By assume that the model and prototype have geometric 
similarity (Cx = Cy = Ca = Cb), the similarity requirement 
is simplified to, 
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Eq.(7) is the similitude invariant of the vibration of 
rectangular plates. This invariant can be reduced to the 
scaling law of plate natural frequency as, 
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 In conclusion, the derived scaling law for vibration 
of plate is valid for a model-prototype pair with complete 
geometric similarity, i.e. Ca = Cb or both systems have the 
same aspect ratio. The scaling law can be verified with 
the theoretical solution shown in the previous section, as 
shown in Table 1. Rectangular plates with b = 250mm 
and aspect ratio of 1, 1.5, and 2 are selected as models, 
and used to predict the natural frequencies of the 
prototypes with b = 200 mm and 300 mm. All plates are 
assumed to be Al6061-T6 with E = 68.9 GPa, v = 0.35, ρ 
= 2.71×103 kg/m3, and plate thickness h = 2 mm. The 
natural frequencies of the models determined from the 
analytical solution, eq.(3), are shown in column 2. These 
natural frequencies are substituted into the scaling law to 
predict the scaling natural frequencies of the prototypes, 
as presented in the “Scaling” columns. The scaling 
frequencies are verified with the theoretical solutions 
shown in column 4 and 6. It is confirmed that the natural 
frequencies determined from the scaling law and those 
from the closed form solutions are identical. Therefore, 
the derived scaling law for natural frequency of 
rectangular plate is verified, theoretically.    
 Next, the derived scaling law is validated by real 
measurements. The experiment is performed to determine 
the accuracy and repeatability of the approach. 
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Table 1. The fundamental natural frequency in Hz for 
       Al6061-T6 specimens 

Prototype 
b = 200mm b = 300mm 

Aspect 
ratio 

Model 
b=250mm 

Theory Scaling Theory Scaling 
1 156.2 244.1 244.1 108.5 108.5 

1.5 112.8 176.3 176.3 78.4 78.4 
2 97.6 152.6 152.6 67.8 67.8 

 
3. Experiment study  
 To determine the accuracy of the scaling law, 
rectangular aluminum thin specimens were prepared and 
measured for natural frequencies. The specimens were 
then classified as a model or a prototype. The measured 
natural frequencies of the models were used along with 
the scaling law to predict the natural frequencies of the 
prototypes. Then, the scaling natural frequencies were 
compared with the experimental natural frequencies of 
the prototype to find the accuracy of the scaling law. 
 
3.1 Experiment setup and specimens  
 A total of nine specimens with the length and width 
of a and b, respectively, were tested in this study. The 
schematic drawing of the specimen dimension and 
boundary condition are shown in Fig.1. The specimen 
boundary conditions are simple support, as shown by a 
dashed line in Fig.1, on three edges and free on one of the 
width edge. The specimen aspect ratios (a/b) are 1, 1.5, 
and 2 with specimen nominal width b of 200, 250, and 
300 mm., respectively. The specimens are mounted in the 
experiment setup and equipped with impact hammer and 
accelerometer as shown in Fig.2. The simply supported 
boundary condition is enforced by two stainless steel bars 
coupled on the specimen. The support is cut in the 
inclined direction to form a knife-edge. These supports 
allow the specimen to freely rotate, but restrain any out-
of-plane displacement. The knife-edge supports are fixed 
with steel boxes by machine screws. There are additional 
machine screws used to push the support against the 
specimen surface. The assembly of steel boxes and knife-
edge supports was tested for natural frequency, also, to 
confirm that their natural frequencies are not in the range 
of that of the specimens. The vibration test for natural 
frequency is determined by impact test. The impact 
hammer is used to excite the specimen. The applied 
impulse can be monitor by the dynamic signal analyzer. 
An accelerometer is placed on the specimen at a selected 
location to measure the plate response in term of 
acceleration. It is recommended that the accelerometer 
should not be on the node line of the vibration to avoid 
low response signal. If the node line is unknown or 
uncertain, more than one measurement is recommended. 
In this study, five pretests were conducted to determine a 
suitable accelerometer’s location. Measured accelerations 
from the accelerometer are collected by a dynamic signal 
analyzer and used to determine the natural frequencies.  
 
3.2 Data analysis       
 The acceleration measured in time domain is 
processed by a Fast Fourier Transform (FFT) algorithm 

using the dynamic signal analyzer. From the vibration 
response in frequency domain, the natural frequencies of 
the specimen are identified from the peak of the response. 
Theoretically, there are infinite number of natural 
frequency, however, only the first three modes are 
studied in this study. Fig.3 shows the vibration response 
measured in frequency domain obtained from the data in 
time domain for specimens with dimension of 30×20 and 
60×30cm2. The measured natural frequencies in Hz for 
the first three modes are 175, 279, 449 and 89, 110.5, 
149, respectively.  
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Fig. 1 Schematic drawing of rectangular specimen 
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 Knife-edge support 

 Accelerometer Impact hammer 

 Steel Box

 
Fig. 2 Experiment setup with accelerometer and impact  
          hammer 
 
 
 The experimental results similar to those of Fig. 3 
can be obtained from an experiment with excitation and 
accelerometer locations located at particular positions. 
Ideally, the same natural frequencies should be acquired 
no matter where the excitation and accelerometer are 
located. In this study, a total of 25 measurements were 
performed on each specimen. An accelerometer was 
placed on a selected point, while a total of 25 excitation 
points was systematically varied to cover the whole 
specimen area. The experimental natural frequency was 
determined from the average of each measurement. For a 
specific specimen, natural frequencies from each 
measurement are very similar which confirms that the 
experiment is very repeatable. 
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Fig. 3. Vibration response in frequency domain 
 
 

4. Experiment result 
 From the vibration response in the frequency 
domain, the first three natural frequencies of each 
specimen are presented in Table 2. The specimens are 
classified into three groups of aspect ratios of 1, 1.5, and 
2. It is noticed that the natural frequencies decrease when 
the specimen is bigger. The specimens are assumed to be 
a model or a prototype and used to verify the scaling law, 
as shown in Table 3. From three specimens with aspect 
ratio of 1, three comparisons of scaling and measured 
natural frequencies can be made. That is, as shown in 
column 2 and 3 of Table 3, a specimen with 25×25 
dimension is set as a model, and other two specimens are 
prototype. The other model-prototype pair is specimen 
20×20 and specimen 30×30. The other two aspect ratios 
can also be compared in the same approach. In Table 3, 
column 4 and column 5 are the measured natural 
frequencies of the model and prototype, respectively. The 
next column labeled “Scaling” is the scaling natural 
frequency of the prototype. These scaling natural 
frequencies are determined from the scaling law shown in 
eq.(8) using the measured natural frequencies of the 
model.  The scaling and experimental natural frequencies 
shown in column 6 and 5 are compared to each other. The 
percent discrepancy of the scaling natural frequency is 
determined according to, 
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 The comparisons for vibration in mode 2 and 3 are 
performed similar to those of mode 1, and shown in the 
second and third parts of the table. The average and 
standard deviation of percent discrepancy for each 
vibration mode are shown in the last two rows of Table 3. 
The average percent discrepancy in each mode is as high 
as 1.25% with the overall percent discrepancy of 0.25%. 
There is a case of comparison where percent discrepancy 
is as high as 18.7%. There is no significant difference in 
average percent discrepancy for each vibration mode. The 
overall standard deviations from 27 comparisons of 
percent discrepancy are 6.4%. The vibration mode 1 has 
the highest deviation of percent discrepancy of 9.94% 
while the deviation of percent discrepancy decreases in 
the higher modes. This implies that the measurement of 
natural of the high mode is accurate than that of the lower 
mode    
 
5. Discussion and conclusion 
 Compared to the scaling law for buckling of plate 
studied by Alanpitak [7], the scaling law for vibration 
response shows a better accuracy in prediction of natural 
frequency. The average percent discrepancy for vibration 
measurement is significantly better, i.e. 0.25% compared 
to –5.9%.  Similarly, the standard deviation of the percent 
discrepancy for this vibration experiment is lower than 
that of the buckling experiment. Experiment results of 
both buckling and vibration experiment do not imply that 
the vibration scaling law is accurate than that of the 
buckling problem. The difference in accuracy found in 
both problems is probably initiated from the difficulty in 
identifying the buckling point in buckling experiment 
which is not found in vibration experiment. The natural 
frequency determined from the vibration response in the 
frequency domain, as shown in Fig. 3, is more accurate 
than the buckling load determined from the buckling 
experiment. 
 In conclusion, this research derives the scaling law 
for vibration response of rectangular thin plates. In 
addition to the scaling law, the similitude requirements 
for two systems to behave similarly are also obtained. 
The scaling law is verified with the theoretical solution 
and found that the scaling natural frequency is exactly 
matched with the closed form solution. The experiment 
setup was built to accommodate the vibration experiment. 
A set of nine rectangular aluminum plates was set in the 
test setup with simple support on three edges and free 
support on one edge. The specimen was excited by 
impact hammer and measured for vibration response 
using an accelerometer. The measured acceleration 
response in time domain was then transformed to the data 
in frequency domain. The natural frequencies can be 
identified from the peaks of the response in frequency 
domain. 
 The experiment results were used to verify the 
scaling law. It is found that the average discrepancy 
between the scaling and experimental natural frequencies 
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is 0.25% with 6.4% standard deviation. This discrepancy 
is very much lower than that of the buckling experiment 
studied previously. This suggests that, in nature, the 
natural frequency can be measured with higher accuracy 

and repeatability. A better agreement between the scaling 
and measured natural frequencies can be obtained if both 
systems have higher degree of similarity.  

 
 
 Table 2. Measured natural frequencies of the specimens SSSF boundary conditions 
 

Aspect 
ratio 

Size 
a × b (cm2) 

Mode 1 
(Hz) 

Mode 2 
(Hz) 

Mode 3 
(Hz) 

20×20 223.0 412.0 588.0 
25×25 133.5 274.5 358.0 

 
1 

30×30 83.5 173.5 251.0 
30×20 175.5 279.5 449.5 

37.5×25 117.5 175.5 282.0 
 

1.5 
45×30 86.0 130.0 197.0 
40×20 181.0 250.0 334.0 
50×25 120.5 164.0 211.5 

 
2 

60×30 89.0 111.5 149.5 
 
 
 Table 3. Natural frequencies determined from the scaling law compared with the experimental results 
 

ω of mode 1 ω of mode 2 ω mode 3 
Prototype Prototype Prototype 

Aspect 
ratio 

Model Prototype 
Model 

Exp. Scaling % Dis
Model

Exp. Scaling % Dis
Model 

Exp. Scaling % Dis
20×20 30×30 223.0 83.5 99.1 18.7 412.0 173.5 183.1 5.5 588.0 251.0 261.3 4.1 
25×25 20×20 133.5 223.0 208.6 -6.5 274.5 412.0 428.9 4.1 358.0 588.0 559.4 -4.9 

 
1 

 25×25 30×30 133.5 83.5 92.7 11.0 274.5 173.5 190.6 9.9 358.0 251.0 248.6 -1.0 
30×20 45×30 175.5 86.0 78.0 -9.3 279.5 130.0 124.2 -4.4 449.5 197.0 199.8 1.4 

37.5×25 30×20 117.5 175.5 183.6 4.6 175.5 279.5 274.2 -1.9 282.0 449.5 440.6 -2.0 
 

1.5 
37.5×25 45×30 117.5 86.0 81.6 -5.1 175.5 130.0 121.9 -6.3 282.0 197.0 195.8 -0.6 
40×20 60×30 181.0 89.0 80.4 -9.6 250.0 111.5 111.1 -0.3 334.0 149.5 148.4 -0.7 
50×25 40×20 120.5 181.0 188.3 4.0 164.0 250.0 256.3 2.5 211.5 334.0 330.5 -1.1 

 
2 

50×25 60×30 120.5 89.0 83.7 -6.0 164.0 111.5 113.9 2.1 211.5 149.5 146.9 -1.8 
     Avg. 0.21   Avg. 1.25   Avg. -0.71
     Std. 9.94   Std. 5.05   Std. 2.45
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