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Abstract

This paper presents a preliminary investigation on the multi-
objective topology design by the genetic algorithm (GA) and finite
volume (FV) method. The continuum design divides the available
domain into uniform regular parallelepiped grids. By selective
filling these grids or leaving the spaces empty, different structural
configurations are obtained. Performances of structures are
calculated by FV simulations and 4 different multi-objective GA
procedures — MOGA, NPGA, NSGA-I and NSGA-Il — searches
for optimum block arrangements. A 2D heat conduction problem
with the domain composed of a structured 5 x 4 grid is used as
the test case. The design objective is to obtain lightweight
configurations that can dissipate lots of heat into the
surroundings. Results of the test run, with prescribed numbers of
simulated ad hoc configurations of less than 2% of the total
combinatorics, are satisfactory. On average, all 4 GA procedures
obtain more than 90% of the true optimum solutions with the
100% performances from NSGA-II.

Keywords: Topology design, multi-objective optimisation,
genetic algorithm, finite volume method.

1. Introduction

The genetic algorithm (GA) and computational mechanics
have been combined for structural topology optimisation. The
topology design allows the creation of new boundaries and may
be divided into 3 main categories — the discrete truss design, unit
cell properties, e.g. orientation and porosity in composite
materials and the continuum structural design.

In the continuum topology design [1], the space that
contains the structure is specified. As this area can be divided
into small basic geometrical shapes, structures may be
assembled by block buildings. Given design parameters and
restrictions, patterns of block arrangements that can superlatively
perform specified objective functions can be found. This
procedure has the advantages of freely evolved topology and the
complete absence of human bias as no a-priori knowledge about
the topology is needed.

Hence, performances of structures must be evaluated with
minimum human involvement and the numerical modelling fulfils
these requirements very well. As most previous studies involves
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stress analysis problems, the finite element (FE) method has
been employed in virtually all cases [1], [2], [3], [4].

Of these works, most involve single objective problems [1],
[4], [5]. Others [1], [2] use the fithess sharing method which, in
effect, simply combines normalised objective values into a single
variable. This method derates fitness of similar members and
limits growth of particular species within the population [6].

This research is based on a previous single-objective study,
involving a heat transfer application with the FV modelling [7].
The combined approach is found to handle the problem well. It is
clear that a derivative-based optimisation is unsuitable for this
application as the objective functions are highly discontinuous. In
addition, the FV models do not require the finite element
connectivity analysis [1] due to its superlative physical
representation as control volumes with only one shared corner
vertex are not physically attached.

In this paper, the multi-objective topology design is
introduced. Four Pareto optimisations with incorporated GA are
described. The slightly enlarged test case is modified such that
the load is non-uniform, yielding more complex solutions.

2. Genetic Algorithm (GA)

The genetic algorithm (GA), inspired by concepts of natural
selection and evolutionary processes [6], is a derivative-free,
population-based optimisation method.

The problem-specific knowledge is translated into the GA
framework by the encoding scheme, which transforms points in
the solution space into binary bit strings or chromosomes. Each
chromosome is associated with fitness values. The GA stores a
set of points as a population, representing the gene pool for the
solution. A group of randomly generated chromosome forms the
first generation, from which successive generations are
repeatedly evolved through genetic operators — namely selection,
crossover, mutation and elitism — towards populations with better
fitness values (Figure 1).

The selection operation encourages fitter parent
chromosomes to reproduce offspring for the next generation. For
each pair of selected parents, two children are generated through
the crossover operator. The mutation operator randomly changes
values of binary bits in the chromosomes and, thus, introduces
new routing solution randomly and preventing stagnation at any
local optima. These selection and crossover processes are



repeated until the prescribed number of the new population is
obtained. In addition, the elitism principle keeps a certain number
of best chromosomes for the next generation. Thus, subsequent
generations are generated until a stopping criterion is fulfilled.
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Figure 1 Overview of genetic algorithm evolution

3. Evolutionary Multi-Objective Optimisation (EMOO)

In this section, the multi-objective optimisation and GA are
combined together. The multi-objective optimisation by Pareto
ranking is first outlined, then 4 EMOOs are described.

Multi-objective optimisation searches for decision variables,
which
objective functions. Mathematically, for a problem with n decision
variables and k objective functions, vectors of decision variables

simultaneously satisfies constraints and optimised

x;, i=1..,n are members of the solution space set F. The
optimised decision vector x;
constraint g;(x;)>0, j=1...m as well as p equality constraint
hi(x)=0,j=1..p, optimises  the
objective functions f,(x,), j=1...k

As there is rarely a case that a single point in solution space
simultaneously optimises all objective functions, trade-off
solutions are instead sought after. For example, if objective
functions are to be minimised, a vector of decision variables
x; €F is Pareto optimal if f(x;)<f(x;) for all j and
f(x;)<f,(x;) in atleast one .

This concept gives a set of solutions, called the Pareto
optimal set. The x; , corresponding to the solutions in the Pareto
optimal set, are named non-dominated vectors. The plot of the
objective functions of the non-dominated vectors is called the
Pareto front.

Multi-objective optimisation uses the Pareto ranking process
to assign the rank of every members of the current population. All
non-dominated individuals are assigned rank 1 while ranks of
others are equal to one plus the number of its dominating
chromosomes. For instance, Figure 2 shows an example of the
Pareto ranking in the minimisation of 2 objective functions.

In evolutionary optimisation, the EMOO differs from the
single objective genetic algorithm (SGA) mainly in fitness
assignment and selection. The SGA straightforwardly employs
the values of the single objective function as fitness while an
EMOO assigns fitness and selects parent chromosomes through
ranking procedures.

must satisfy the m inequality

while  simultaneously

O member, rank
Qi, rank 1

L : ii, rank 1 .
8 : Q” ran o iv, rank 2

viii, rank 3
1o}

s | I i, rank 1

v, rank 1

vii, rank 1

Objective function 2

ool—L 1Ly

Objective function 1

Figure 2 Example of Pareto ranking for objective minimisation

3.1 Multiple Objective Genetic Algorithm (MOGA)

MOGA, proposed by Fonseca and Fleming [9], differs from
SGA only in fitness assignment. MOGA first sorts all N members
of the current generation into rank 1 to r <N (Figure 2). The
Pareto ranking assignment process [6] calculates the dummy
fitness values of each chromosome by linear interpolation from
rank 1 to r and assigns block fitness to members with the same
rank, equal to their average dummy values, to give the all
members in the rank the same chance of selection (Figure 3).
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Figure 3 MOGA fitness assignment of members in Figure 2

Since the use of this block fitness may cause a large
selection pressure, leading to premature convergence [6], a
niche-formation method for population distribution over the
Pareto optimal region is used to provide the final fitness values
for selection process [10].

MOGA performs sharing in the objective function domain [9]
by first calculating the corresponding niche size or sharing factor,
o , which establishes the distance between two individuals that
influences the fithess of each other. Using the minimum and
maximum values of each objective function, m, and M,,
Jj=1...,k, of the current generation, o can be obtained from:

k k
H(MI -m; +G)_H(M/ -m;)
Nkt _ J=1 j=1
o

=0. (1)

The population cluster density around a chromosome is
represented by its niche count. When only 2 objective functions
are considered, the niche of a candidate member may be

Block fitness value



visualised as a circle with radius o , centred on the member. The
niche count of a member is computed from:

niche count =1+ i{1 ~(d, /o)), @)
q=1
where Q is the number of comparison set member that lies within
the circle and d, is the distance from the chromosome to in-
circled members (Figure 4).

This sharing of individual dummy fithess values help
maintaining the diversity of population and discourage the
concentration of members in particular regions in the objective
domain.

The final fithess value of a member is equal to the block
fitness divided by its niche count. In this study, the roulette wheel
selection is employed with mating restrictions for crossover [6].
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Figure 4 Niche formation method with objective minimisation

3.2 Niched Pareto Genetic Algorithm (NPGA)

In NPGA, proposed by Horn, Nafpliotis and Goldberg [11],
an updated population with N members are created from the
current population before the chromosome reproduction.

First, all members with rank 1 are copied to the updated
population according to the elitism principle. The rest of the
updated population are generated by the tournament selection
scheme based on Pareto dominance.

In the tournament selection, chromosomes are chosen by
comparison with others. Instead of using all population as the
comparison set as in MOGA, limited set with M members,
typically around 10% of the population size, is involved in the
competition. The M candidates for selection and the equal
number of comparison set members are picked at randomly from
the population. Each candidate is then ranked (Figure 2) and
compared against the comparison set.

Only one of the candidates is chosen for the updated
population. If only one candidate is non-dominated, it is
automatically chosen. Otherwise, if some of the candidates are
non-dominated or all are dominated, they are equally preferable
from a Pareto point of view and it is likely that they belong to the
same equivalent class (Figure 4). These equivalent classes can
be labelled equally fit, any candidate may be chosen and no form
of fitness degradation is implemented.

In the interest of maintaining diversity of the gene pool,
however, niches are formed and the winning candidate is chosen
for its lower niche count value by the equivalent class sharing. In

Figure 4, for instance, candidate 2 is chosen rather than
candidate 1.

When the new population is produced, a simple random
selection chooses parent chromosomes for reproduction as the
preference for fitter members is already incorporated in the form
of duplicated copies.

3.3 Non-Dominated Sorting Genetic Algorithm | (NSGA-I)
NSGA-I, proposed by Srinivas and Deb [13], is based on the
front, which is obtained from several layers of individual sorting.
Before selection, the population is sorted on the basis of Pareto
ranking domination (Figure 2). All non-dominated chromosomes,
or those with rank 1, are assigned front 1. Then this group of
classified individuals is removed form the population and another
layer of non-dominated chromosomes from the remainder of the
population are obtained and assigned the next front. This
procedure is repeated until all members are sorted (Figure 5).
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Figure 5 Member classification by front

The dummy fitness values, proportional to the front, are then
assigned to every member by linear interpolation from front 1 to
the last front f <N as shown in Figure 6. This interpolation is
quite similar to the rank interpolation in Figure 3, but with front
instead of rank and the linear relationship of dummy fitness
between front, rather than members.

10 o.
.
N
S & o
g AN
® N
g 6 0\\
£ N
= .
> 4t
£ LN
£ \\\
a 2t 1if o front f
0.0 ; ; ; . ;
1 2 3 4 5
Front

Figure 6 NSGA-I dummy fitness assignment

To maintain the diversity of population and help distributing
population over the objective domain, the dummy fitness values
members of the same fronts are shared. The final fitness values,
used to choose parent chromosomes in the roulette wheel
selection, are calculated with the same sharing factor and niche
size as in MOGA [9].



3.4 Non-Dominated Sorting Genetic Algorithm Il (NSGA-II)

NSGA-Il, also by Deb [14], proposed a new population
sorting procedure. The sharing is replaced with a crowd
comparison method, which sort the population according to the
crowding distances of objective values.

In a generation t, the current parent population P; with N
members produces the equal number of offspring Q; by the
simple random selection. The parent P; and children Q; are then
combined together to form the merged population R, half of
which are chosen as the parent population of the next generation
P:.1 as shown in Figure 7.
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Figure 7 NSGA-II crowd comparison procedure

The choosing procedure starts with the classification of
members of R; into fronts from 1 to f <N . Chromosomes of
better fronts are added en block into the new population P;.q until
the number of selected members is no less than N. If the
population number is greater than N, members of the last front
are lined up in descending order of their crowding distances and
those with lower values are removed from the population until the
population number is equal to N.

In the calculation of the crowding distance, the objective
values are first normalised and members located at both end
spectrums of the normalised values, shown as grey-filled circle in
Figure 8, are automatically chosen in order to maintain the
diversity of the gene pool.

For the rest, a crowding distance of a member n for an
objective function j, d
objective values of its adjacent members The summation of d
from all objective functions j=1....,
distance for n. A high value of crowding distance indicates that

, is equal to the difference of normalised

k yields the overall crowding

the chromosome locates apart from others in the objective
domain and is prized for its gene diversity.
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Figure 8 Crowding distance of member n (filled circle) for objective j

4. Objective Evaluation by the Finite Volume Method

The heat dissipating capability of configurations are
evaluated by the FV method. The energy conservation with the
Fourier's law is employed as the governing equation. For a body
in thermal equilibrium without internal heat sources, the model is:

jq,ds jk—ds 0, (3)

where the normal, outwards vector S; presents the surface that
bounds the body and q; is the heat flux across the surface, k is

the thermal conductivity, T is the temperature and X, is the
position vector.
The employed boundary conditions are prescribed

temperature and surface convection. The Newton’s law of cooling
for heat flux g leaving the fluid into solid per unit area is:

Q" =h(T*-T"), @)

where h is the heat transfer coefficient, T° is the temperature at
the solid boundary and T? is the ambient fluid temperature.

The mathematical model is discretised by a cell-centred FV
technique for arbitrarily shaped control volumes [12]. The spatial
domain is divided into a finite number of control volumes or cells.
Figure 9 shows a typical cell, bounded by faces m. The
computational node P locates at the cell centroid. In addition,
there are non-computational boundary nodes that are introduced
for the specification of boundary conditions.

Figure 9 A typical control volume

The 2nd-order accurate spatial distribution is assumed.
Gradients of a quantity ¢ at node P are obtained by ensuring a
least square fit of ¢ through P and its adjacent nodes. Thus, the
diffusion flux through the cell face m into a neighbouring node Q
is approximated using the orthogonal correction method as:

oT Te-T° S d"
dsm ~ i i Sm 5
ox, ' [ ( ) S" d" )j ®)

For the convection boundary, the boundary temperature T
is calculated by substituting equations (3) and (4) into (5):

To(h+ Xy~ k [

" ]Jr hT?. (6)

Then, the temperature at a boundary cell face is incorporated into
the cell equation by substituting 79 by T° in (5).
The equation for each control volume may be rearranged as
PTP ->aT®=b, where a” and a® are respectively the
coefficients of the cell and its neighbours and b is the source
terms. By assembling equations of all cells, a system of algebraic
equations is obtained with nodal temperature as unknown. The
resulting system is linearised, segregated and iteratively ‘solved’
by the incomplete Cholesky conjugate gradient (ICCG) solver
until a certain level of convergence is reached. The updated
results are then used to adjust the non-linear terms; and the new
system is ‘solved’ again. This procedure is repeated until implicit
solutions are obtained.

5. Test Case

A 2D heat transfer problem with convective boundary is
used as the case study. Given a wall with distributed temperature
profile, a limited space is available for attaching a lightweight
solid protruding configuration that allows high heat loss form the
wall. The dissipated heat is calculated from the combined heat



flux from the wall into the protruding structures and the
surroundings while the number of blocks is used to indicate the
weight of the configuration.

In this paper, the dimension of available space with unit
thickness is 50 mm x 40 mm. This structure-containing space is
divided into 5 x 4 mm rectangles of equal size (Figure 10). Other
parameters are prescribed as follows: the temperature of the wall
varies linearly from 0 °C to 100 °C, the ambient temperature
T°=0°C, the thermal conductivity of the protruding solid
k =50 W/mK and the heat transfer coefficient from the wall and
the protruding body into the surrounding h =25 W/m*K . It is also
assumed that the air circulation is so good that the ambient air
temperature in close proximity to the wall and the protruding body
remains unchanged.

50 mm

grid16{grid17 grld18|grid19 grid20

T° =0 °C
grid11|grid12 gridialgrid14 grid15

40 mm

grid6 | grid? | grid8 | grid9 |grid10
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_
0°C wall 100 °C

Figure 10 Problem descriptions and block placements

Configurations of solid block in the available space are
encoded into 20-bit binary chromosomes in the order illustrated
in Figure 10. The block insertion on a grid, shown as a shaded
area, is represented by ‘1’ whilst ‘0’ signifies a void in the
corresponding location. For instance, the configuration in Figure
10 may be encoded into ‘10010 00011 00110 01100’

It is noted that in this preliminary work, a solid-filled grid is
modelled with only one control volume and no grid independency
is considered.

6. Results

Altogether, there are 2% or about 1.05 million possible
configurations, much more than 4096 patterns from 5 x 4 grid in
the previous work [7]. For comparison, the performances of all
configurations are first calculated by FV to provide the true
Pareto front and optimal sets as shown in Figure 11 and Figure
12, respectively.

The highest heat loss values of configurations with 14 blocks
and over are less than that of the 13-block structure, hence the
non-dominated vectors contain solutions with 13 blocks or less
as shown in the Pareto front (Figure 11).

Figure 12 shows that all 19 optimum configurations have 2
common characteristics, the wall-structure contact position and
surface exposure. The ftruly influential wall-structure contact
position is the right hand side as the prescribed temperature is
highest. Due to the good conductivity, temperature distribution in
the structure is fairly high and any additional contact of the
structure and the wall induces the unwelcome heat transfer into
the wall. For the second feature, the structure tries to expand
outwards to maximise the exposure area.
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Figure 11 True Pareto front of the test case
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Figure 12 Optimum solutions of the test case

This study uses a simple unoptimised GA algorithm. lIts
control parameters are simply chosen as follows: maximum
number of generation = 200, the population size in each
generation = 100, 1-point crossover at the rate of 1.0, bit flip
mutation with 0.01 mutation rate and rank 1 chromosomes are
automatically elite. Hence, in each run, around 1.9% of the
combinatorics, albeit with many repeated appearances, are
simulated.

For comparison, the design modellings for each EMOO are
repeated for 20 times. The numbers of true Pareto optimum
solutions that are found by the GA in each run as well as the
number of generations required for the algorithm to find all true
optimum solutions in the run are shown in Table 1 while the
average values are shown in Table 2.

It is found that NSGA-II gives the best performances as it
finds all true optimum solutions in every modelling, followed by
MOGA at 50% of the runs. The NPGA and NSGA-I yield not too
different results since they can search for all complete set of true
optimum solutions in less than 25% of all running times.

In addition, NSGA-Il, with 100% performance for true
optimum solutions, on average finds them in 124.4 generation,
each with 100 members or about 1.2% of the total possible
configurations. Even though MOGA can search for all solutions in
only half the times, when it does, it is a little faster at 117.3
generations on average. In comparison, the number of complete



solution runs for NPGA and NSGA-I are quite small and are
either very quick or near the end of the run.

Table 1 Comparisons of various EMOO solutions

Generation no. that all true No. of true optimum solutions

Run optimum solutions are found found in each run

MOGA | NPGA |[NSGA-I|INSGA-II| MOGA | NPGA |NSGA-I [NSGA-II

1 95 67 N/A 189 19 19 16 19
2 N/A N/A N/A 144 17 17 18 19
3 97 N/A 161 84 19 18 19 19
4 N/A N/A N/A 180 18 18 18 19
5 N/A N/A N/A 108 18 17 17 19
6 192 N/A N/A 67 19 18 16 19
7 N/A 165 N/A 121 18 19 16 19
8 104 N/A N/A 92 19 18 16 19
9 N/A N/A N/A 67 18 18 18 19
10| N/A 78 N/A 80 18 19 17 19
11 99 N/A N/A 188 19 18 15 19
12 73 N/A N/A 167 19 18 17 19
13 84 N/A N/A 194 19 17 15 19
14| NA N/A N/A 76 18 17 18 19
15| NA 198 N/A 101 18 19 17 19
16| NA N/A N/A 72 18 18 17 19
17| 179 N/A N/A 88 19 17 17 19
18| NA N/A N/A 119 16 18 16 19
19 97 N/A 196 196 19 18 19 19
20| 153 N/A N/A 155 19 18 18 19

Table 2 Overall comparisons of various EMOO solutions

Indicator MOGA | NPGA | NSGA-I [ NSGA-II

Average generation no. that all true

/ ; N/A N/A N/A
optimum solutions are found

124.4

Average no. of run that all true 10 4 or 2 20

optimum solutions are found (50%) | (20%) | (10%) | (100%)
Average no. of true optimum 18.35 17.95 17.00 19.00
solutions found in each run (96.6%) | (94.5%) | (89.5%) | (100%)

7. Discussions and Conclusions

A preliminary multi-objective topology design procedure
using combined GA and FV method is investigated. The concept
of the structural design by composition of basic units is outlined.
Four different Pareto-based EMOOs, namely MOGA, NPGA,
NSGA-I and NSGA-II, are investigated.

EMOO may not be able to find all true optimum solutions
under the given GA parameters of 200 generations, each with
100 members. Only NSGA-II finds all true optimum solutions in
all runs while MOGA, NPGA and NSGA-I respectively achieves
the same in 50%, 20% and 10% of the test runs.

The inability to find all true solutions does not imply that the
performance is much more inferior; only one or two solutions may
elude the search. On average, MOGA finds 97% of the true
optimum solutions; NPGA finds 95% and NSGA-I 90%.

In future development, the problem sizes are much larger,
resulting in incredibly large combinatorics and all true optimum
solutions may never be known. Hence, it is not expected that all
true solutions are obtained. Uncompleted near optimum, but
diversified, solutions are generally acceptable and useful for
practical proposes.

Consequently, all 4 EMOOs are considered satisfactory, with
over 90% of the true optimum solutions are found. Tentatively,
NSGA-II gives the best performances, probably due to the

absence of sharing assignment in the procedure. The sharing is
very sensitive to niche sizes and is considered a weak point of
EMOO [8].
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