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Abstract 
 This paper is aimed to present the combination of the parallel 
computing and the multigrid method on the Navier-Stokes solver. 
The combination is based on the concept of the object-oriented 
programming (OOP), which consists of 4 independent modules: 
Grid Generation, Navier-Stokes Solver, Multigrid Method and 
Parallel Computing modules. The multigrid method is 
implemented by employing the full approximation storage (FAS) 
scheme for numerically solving the non-linear Navier-Stokes 
equations. The overall computation is performed by using the 
parallel computing in which a number of computers are 
concurrently computed for the same task but on different sub-
data. The two-dimensional laminar flow in a cavity at Re=1,000 is 
used as a test case. It is found that the computational time is 
decreased significantly when employing the combination of the 
multigrid method and the parallel computing.  
 
1. Introduction 
 In recent years, Computational Fluid Dynamics (CFD) has 
been a design tool in industries due to, for example, the lack of 
instruments to measure some quantities in some dangerous 
zones. In addition, the advantages of CFD are the low cost to 
construct and the ability to immediately observe some phenomena 
through a monitor of personal computer (PC). However, when the 
flow is so complicated, the number of data points required to 

capture the physics of flow has to be large enough. A single 
computer is limited to its memory and speed. In other words, it 
may compute one problem for a large number of iterations or it 
cannot handle with a large number of data at all. The 
convergence rate of iterative methods can be greatly improved by 
using multigrid acceleration techniques. The multigrid methods 
eliminate some errors on the coarser grid that cannot be 
eliminated by the finer grid and then correct the solutions up to 
the finest grid. The time consumption, moreover, can be 
decreased by using a large number of computers to 
simultaneously solve the same problem, which is the so-called 
parallel computing. The data is  partitioned to the smaller data 
and assigned to each processor for performing the same function. 
This kind of parallel computing is called the Single Instruction 
Multiple Data (SIMD) architecture  
 In this paper the combination of the parallel computing and 
the multigrid method on the Navier-Stoke solver is presented. The 
solver code is carried out for the steady laminar flow in a two-
dimensional cavity. The numerical solutions are then compared 
with Ghia, Ghia, and Shin [1]. To take into account the data 
synchronization, interchanging and updating the boundary data at 
the interface between a pair of adjacent processors are essential. 
Therefore, the Message-Passing Interface (MPI) library is used in 
the present work to perform such a task. 
 
 

  
 

mailto:Kiatt2000@hotmail.com
mailto:ovrsk@ku.ac.th
mailto:pu@ku.ac.th


2.  Governing Equations 
 The present work is focused on the incompressible laminar 
flow which is governed by the continuity and Navier-Stokes 
equations where all the fluid properties are treated to be constant. 
  
2.1 Continuity Equation 
 The continuity equation is derived from one of the basic laws 
of physics: if there is no mass generated in the control volume, 
the amount of mass entering the control volume has to be equal 
to the amount of mass passing out of the control volume.  
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where  is the fluid density and ρ ju  are the velocity components. 
 
2.2 Navier-Stokes Equations  
 The second law of Newton is all about the conservation law of 
momentum. Applying the conservation law of momentum over a 
fluid particle and treating it as the Newtonian fluid, the Navier-
Stokes equations for the steady incompressible laminar flow can 
be derived in the form of tensor   
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where  is the viscosity and µ p is the pressure.  
 
3.  Numerical Method 
 In this work, the finite volume method is employed to 
numerically solve the governing equations which consist of the 
continuity and Navier-Stokes equations. The numbering system E, 
W, N, and S are referred to East, West, North, and South 
respectively. 
 Integrating the continuity equation over the control volume 
gives 
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Integrating the Navier-Stokes equations over the control 
volume with the second-order central differencing scheme for the 

diffusive terms and with the first-order upwind scheme for the 
convective terms, the standard form of the finite volume equation 
can be arranged as  
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and (streamwise and cross-stream velocities 
respectively).  

  u and vφ=

Once the continuity and Navier-Stokes equations have been 
discretised, the Semi-Implicit Method for Pressure-Linked 
Equation (SIMPLE) is employed to solve these discretised 
equations in order to avoid the decoupling problem between 
velocity and pressure fields. The collocated grid arrangement is 
used in this work so that all variables are stored at the center of 
each control volume. The Rhie-Chow interpolation is the process 
of determining the mass flux that entering into and passing out of 
the control volume to take into account for the nonlinear pressure 
However, in the present work, the Rhie-Chow interpolation is not 
used. The SIMPLE algorithm [2] for the simulation of steady 
incompressible laminar flow can be summarized as follows: 
 

(1) Initialize the velocity and pressure with the guessed 
values. 

(2) Solve the Navier-Stokes equations for the velocity 
field. 

(3) Solve the pressure correction equation for ′p . 
(4) Correct the pressure and velocity by the pressure 

correction ′p . 
(5) Repeat steps (2)-(4) until the solution converges. 

 
4. Multigrid Method 
 One drawback of conventional iterative methods is that they 
cannot eliminate the low-frequency component of error effectively. 
However, the low-frequency error on the fine grid appears as the 
high-frequency error on the coarser grid [3].  Therefore, it is 
worthwhile to eliminate the high-frequency error on the coarser 
and coarser grid and then evaluate the corrections to correct all 

  
 



the way up to the next finer and finer grid solutions. This strategy 
is called the multigrid technique. 
 The multigrid method is the combination of the smoothing 
process, in which the equations on each grid level are solved, and 
the restriction and prolongation processes, which transfer the 
current approximate solutions, equation residuals and correction 
quantities between adjacent grid levels: the restriction transfers 
the data down to the coarser grid and the prolongation transfers 
the data up to the finer grid. The multigrid scheme specifies how 
the coarse-grid problem is generated from the fine-grid problem 
and what order the multiple grid levels are visited, i.e., the cycle 
types, for example, the multigrid V-cycle is the one where a 
recursive algorithm has the following steps: pre-smoothing 
iterations, restriction to a coarser grid, solving the coarse grid 
problem for coarse grid corrections, prolongation of corrections to 
the fine grid, and post-smoothing iterations. The problems are 
solved up and down in the same fashion which leads to the V 
shape of the cycle, as shown in Fig. 1, the number of pre- and 
post-smoothing iterations are specified inside the circles. The 
number of iterations is fixed for any appropriate value and is the 
same in the pre- and post-smoothing iterations but may be 
different if the optimization is required.    

G1

G2

G3

G4  
Fig. 1 Multigrid V-Cycle 

 In the case of linear problems, a multigrid correction scheme 
(CS) can be used effectively because of the solution errors are 
directly proportional to the solution residuals. Therefore, only the 
solution residuals are restricted to the next coarser grid to solve 
the coarse grid problem for evaluating the corrections. For 
nonlinear problems, however, the CS treatment cannot be 
employed. For example, consider a system of nonlinear algebraic 
equations, A(u) = f, where A is the matrix coefficient of vector u 
and f is the vector of source term. Suppose that v is an 
approximation to the exact solution u.  If the solution error is 
simply e = u – v and the residual is r = f – A(v). Substract the 
original equation from the definition of the residual to give A(u) – 
A(v) = r. Applying the nonlinear operator to the definition of the 
error which can be written as A(e) = A(u - v). Since A is 
nonlinear, the vector u and v cannot be easily split out of the 
operator A, hence A(u - v) ≠ A(u) - A(v). Moreover, the relation 

A(e) = A(u) – A(v) = r is no longer valid unlike linear problems. 
Therefore, there is no simple linear residual equation and thus the 
correction scheme cannot be used to solve the nonlinear 
problems. 
 As stated earlier, the linear equation is possible to “transfer 
the problem” from one grid to another by merely transferring the 
residual. If the equation is nonlinear, the transfer of residual alone 
is generally not possible [3]. Thus, in the case of nonlinear 
equation, the solution must be transferred together with the 
residual. This version of multigrid method is known as the full 
approximation storage (FAS) scheme. The detailed derivation of 
the FAS can be found in [4], this paper illustrates only three levels 
of the FAS algorithm in which there are the following steps: 
• Solve the finest-grid problem, , and then restrict 

the current approximation and its residual to the intermediate 
coarser grid: 
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• Solve the coarsest-grid problem, , and then 

compute the coarsest-grid approximation to the error: 
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Up to now, the restriction process has completed and the  
further steps are the prolongation process: 
• Interpolate the coarsest-grid error approximation up to the 

intermediate grid and correct the current approximation of 
such a grid: 2 2 2

3
h h h

hv v I e= + . 
• Solve the intermediate-grid problem, 2 2 2( )h hA v f h= , with 

the last updated solution as the initial guess and with the 
same source term as in the restriction process and then 
compute the intermediate-grid approximation to the error:   

2 2 2h h h
he v I v h= − . 

• Interpolate the intermediate-grid error approximation up to 
the finest grid and correct the current approximation of such 
a grid: 2

2
h h h

hv v I e h= + .  
 

To incorporate the multigrid technique with the Navier-Stokes  
equations, some special treatment must be taken carefully. The 
velocity components are nonlinear but pressure is linear and both 
the velocities and pressure appear in the system of equations. 
Therefore, the pressure is solved through the pressure correction 
equation by the multigrid correction scheme and the FAS is used 

  
 



for the solution of the velocity components. The current 
approximation of the velocity components, u and v, as well as the 
residual of the momentum and pressure correction equations are 
then restricted to the next coarser grid. Once a coarse grid has 
been visited, the coarse-grid pressure is initialized with the  
guessed value of zero every time, and all the coefficients together 
with the mass flux must be recalculated on this grid with the 
restricted solution, and then the process of the SIMPLE algorithm 
is proceeded for a few iterations with the same steps as in a 
single-grid problem. As the restriction process has gone down to 
the coarsest grid and the coarsest-grid problem is solved, the 
change in the velocity components and the current solution of the 
pressure correction are then prolonged up to the next finer grid for 
correcting the fine-grid current approximation of pressure and 
velocity components: u and v with the change in velocity 
components that prolonged from a coarse grid; p with the 
prolonged pressure correction. Thereafter, the same operation as 
the restriction process is repeated again, but the way is up 
instead of down and the last updated solution is used as the initial 
guess as well as the pressure which is initialized to zero on the 
restriction process, and hence the change in velocity components 
which is prolonged up to the next finer grid is the difference 
between the current approximation and the restricted solution at 
the restriction process. This is the multigrid V-cycle and one cycle 
has been completed as the process goes up to the finest grid, the 
bilinear interpolation is used to restrict the velocity components or 
prolong the corrections and the residuals are restricted by simply 
summing the residuals of the four fine grid control volumes that 
make up each coarse grid control volume. 
   
5. Parallelization Method 
 The basic idea of the parallel computing is that a number of 
processors work in cooperation on a single task. For a distributed 
memory architecture each processor possesses its own memory 
and connects to another ones through the high-speed 
interconnection network. This is called a cluster of computers. 
Each processor can access only its own memory space. 
Therefore, sending data into and receiving data from other 
processors are carried out by means of a message-passing 
interface. The message passing is done by using the MPI library, 
which is portable to most computers [5]. The strategy of parallel 
computing can be classified into two categories: data 
parallelization and task, or function, parallelization. The data 
parallelization is to partition the overall data into a number of sub-
data. The number of sub-data is equal to the number of 
processors. Each sub-data is assigned to each processor where 

each processor performs the same task or the same code on its 
own sub-data. This strategy is called the Single Instruction 
Multiple Data architecture (SIMD). The other is the functional 
parallelization on the Multiple Instruction Multiple Data (MIMD) 
architecture, which assigns different tasks or functions to different 
data on different processors. In this case, each processor 
possesses the same amount of data (or can be different) and this 
data is performed with the function that is different from the 
functions that are performed by other processors. 
 In the present work, the data parallel computing is chosen 
because it is more appropriate for the present CFD algorithm than 
the functional parallel computing. This is because the functions 
used in the present algorithm are solved simultaneously. It should 
be noted that if two computers possess the same name of 
variable, and if the variable in the first computer is changed, the 
second computer will not sense that changing as long as the 
message is not sent to inform and exchange such a variable. 
Thus, if the CFD code in the present work is operated on the 
functional parallel computing, the message has to be sent every 
time for every calculated data point. This gives rise to the time 
overhead that increases the time consumption. 
 
5.1 Parallel Algorithm 
 The parallel computing model should be discussed before 
considering the parallel algorithm. In this paper the model of 
parallel computing is the master-slave model [6]. The master is 
assigned to initialize the necessary data such as boundary and 
initial conditions and send this data to all slaves and the master 
itself. The slaves receive the corresponding data from the master 
and each slave carries out its own data with the same code as 
the sequential algorithm does (see Fig. 2).    
 The algorithm of the parallel computing used in the present 
work can be summarized as follows:  
 
The master: 

1) Determine the number of processors to be used in the 
calculation and then evaluate the size of each sub-data 
that is the size of the overall data divided by the 
number of processors. 

2) Allocate the memory space for the overall data and for 
each sub-data. 

3) Specify the physical boundary and initial conditions on 
the overall data. 

4) Send the initialized overall data to the corresponding 
slave sub-data. 

  
 



5) Perform the solver code on each sub-data until the 
maximum error of all processors reaches the setting 
criteria. In this step, the error of each processor has to 
be interchanged among all processors to find the 
maximum error. In addition, the data at the boundaries 
of the adjacent processors have to be exchanged to 
synchronize the data only on the finest grid. 

6) Transfer each sub-data directly to its corresponding 
location in the overall data. 

7) Display the final results of the overall data (if 
necessary). 

The slave: 
1) Determine the number of processors to be used in the 

calculation and then evaluate the size of each sub-data 
that is the size of the overall data divided by the 
number of processors. 

2) Allocate the memory space for the corresponding sub-
data or sub-domain. 

3) Receive the corresponding location of the initialized 
overall data from the master.  

4) Perform the solver code on each sub-data until the 
maximum error of all processors reaches the setting 
criteria. In this step, the error of each processor has to 
be interchanged among all processors to find the 
maximum error. In addition, the data at the boundaries 
of the adjacent processors have to be exchanged to 
synchronize the only on the finest grid. 

5) Send each sub-data back to the corresponding location 
in the master overall data. 

 
As all processors have executed the solver code, the 

sequential steps of all processing nodes, as shown in Fig. 3, are 
run concurrently. However, some processors may be idle if they 
have been waiting for the messages from a pair of SEND-
RERCIEVE processors that have not sent the data. Since the 
present work uses the standard blocking send/receive MPI 
routine, the receiver will not be able to receive the data and has 
to wait if the sender does not send any. This is the disadvantage 
of poor design of parallel algorithm. 

 
5.2 Communication Strategy 
 In step (5) of the master-processing node and step (4) of the 
slave-processing node, the calculation has been carried out on 
each sub-domain using the same code. In case of the sequential 
code of two-dimensional problems, there are four physical 
boundaries. It should be noted that the parallel code is the copy 

of the sequential code; therefore, each sub-domain also has four 
boundaries. The exchange of the data at the interface of the pair 
node is necessary to avoid the fictitious internal boundary. 

Master

Master Slave 1 Slave 2 Slave p-1

0 1 2 3 4 5 6 7 8 9 10 nx-1

Master send/receive data to/from itself and to/from all slave  before/after calculation

0 1 2

nx/p

nx/p+1

nx/p

nx/p+1

nx/p

nx/p+1

nx/p

nx/p+1

0 1 2 0 1 2 0 1 2

nx = number of point in x- coordinate  or the number of column in this figure

p = the number of processor include master and slave

changing data occurs after finish the calculation in each iteration

 
 Fig.2  A model of parallel computing 
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Master send data to slave

Exchange boundary data
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Calculation for 1 iteration

Calculation for 1 iteration

P1 P2 P3

P0

Slave send sub-data to the
master overall data

 
Fig.3   A sequence of each processor after executing a program 

 
 Data allocation for each sub-domain is depicted in Fig. 3. It 
can be seen that the number of columns for each sub-domain 
after partitioning is incremented by two columns (the gray 
columns). These are called the ghost cells. It is served as the 
boundary for each sub-domain in each node. The first location of 
computing is the second column and now it is no longer the 
boundary, likewise the last location of computing is not the last 
column but it is the column before the last column (it is no longer 
the boundary as well). Let us consider the exchange of the data 
of the slaves 1 and 2. It occurs after the computing has done per 
iteration. The first column of the slave 2 is treated as its left 

  
 



boundary which requires the data from the fourth column of the 
slave 1. Also the last column of the slave 1 is treated as its right 
boundary which requires the data from the second column of the 
slave 2. The others can be interpreted in a similar manner except 
for the first column of the sub-domain of the master and the last 
column of the last slave that are left empty. Therefore, it can be 
seen similar to the sequential code, i.e., the second column in 
Fig. 3 (number 1) of the sub-domain of the slave 1 which is the 
fourth column (number 3) of the overall data of the master. It 
seems as if the data of all slaves treated the same as the data of 
the primary domain. On the other hand, the sixth and seventh 
columns (number 5 and 6) of the overall domain of the master, if 
performed by the sequential code, are updated immediately when 
the computing is operated. However, the last column of the slave 
1 (the right boundary of the slave 1) and the first column of the 
slave 2 (the left boundary of the slave 2) are updated per 
iteration. Therefore, they are still the semi-fictitious internal 
boundary conditions. This causes the solution convergence to 
slowdown. 

7. Results and Discussion  
 A lid-driven cavity flow at Re=1000 is used as a test problem. 
Fluid with u=1.0 m/s and density=1.0 kg/m3  flows  past over the 
top of the cavity as shown in Fig. 4 which depicts the velocity 
contour. The computed u-velocity along the vertical centerline and 
the computed v-velocity along the horizontal centerline of a 
square cavity are compared with the results of Ghia et al [1]. The 
results are agree very well with the reference data. Fig. 6 shows 
the computing time used by the multigrid (MG) and the single grid 
(SG) method, the single grid method uses about 5 times as many 
as the multigrid method does. 

 

 
6. Parallel Multigrid Implementation 
 There are two approaches to incorporate the parallel 
computing with the multigrid method [7]: the domain 
decomposition with multigrid and the multigrid with grid 
partitioning. The domain decomposition is first applied to the finest 
grid. Then, the multigrid method is used to solve problems inside 
each block, that is, the multigrid V-cycle is applied in each local 
finest grid. Since inter-domain connection is limited to the finest 
level, thus communications are only required at this level. For the 
multigrid with grid partitioning, however, the multigrid method is 
used to solve the problem in the whole grid in which the grid is 
partitioned among processors at each level. Therefore, 
communications are required at each level 

Fig.4 Velocity contour at Re=1000 

 

 Domain decomposition methods are often used with the finite 
element method on parallel computers [8]. They are easier to 
implement and require fewer communications only on the finest 
grid. Additionally, they can be applied to general multiblock grids. 
On the other hand, the domain decomposition methods lead to 
algorithms which are numerically different from the sequential 
version and have a negative impact on the convergence rate. Grid 
partitioning retains the convergence rate of the sequential 
algorithm. However, it requires more communication overhead 
because the data exchange at each grid level. Several literatures 
adopted the grid partitioning technique, for example, [8, 9], but in 
the present work the domain decomposition is employed. 

Fig. 5 u- and v-velocity at Re=1000 are compared with the  
reference data  
 

 In order to test the parallel multigrid scheme, requested for 
parallel machine, all cases are run and tested on the 8 single-
processing nodes of CAMETA cluster located at Computational 

 

  
 



Fluid Dynamics Laboratory, Suranaree University of Technology, 
Nakhon Ratchasima, Thailand. In Fig.7, the residuals are plotted 
versus the computing time which are used by the multigrid without 
parallel and the parallel multigrid method with 2, 4 and 8 
processors respectively. It is found that the parallel computing 
with the multigrid method does not improve the overall 
computation performance. However, with 8 processors the time 
consumed by parallel computing with the multigrid method is 
slightly less than a single processor with the multigrid method. 
This is because the number of grid points is large enough. The 
multigrid technique is deteriorated in convergence rate when 
using with the parallel computing because of the effect of the 
internal boundary. It is observe in Fig. 7 that the line of the 
parallel computing have strongly fluctuation with respect to time, 
but the line of the multigrid method without parallel computing is 
nearly smooth. It can  be concluded that the oscillation occurred 
is the effect of the internal boundary. Moreover, this work employs 
the domain decomposition with the multigrid. Only the finest grid 
is taken into account the synchronization of data, which 
possesses the disadvantage of the rate of convergence. However, 
the parallel version with 8 processors has overcome such a poor 
rate of convergence, because the computing time is so fast that 
the influence of internal boundary is diminished. It is interesting to 
think further that if the larger the number of grid points and the 
larger the number of processors are used, how much faster (or 
slower) the parallel multigrid scheme is compared with the 
multigrid method without parallel computing, this is left to study 
further and since the present work is limited only with 8 number of 
processors(nodes). Table 1 reports the time consumption of the 
parallel computing with and without the multigrid method until the 
solution converges. The parallel single grid method is about 7 
times slower than the parallel multigrid method. 

 
Table 1 Comparison of parallel with and without multigrid 
Number of 
Processors 

SG 
(time in s) 

MG 
(time in s) 

2  2.349704e+04 3.338826e+03 
4  1.189300e+04 1.613995e+03 
8  6.338385e+03 9.328902e+02 

 

 
Fig. 7 Multigrid with and without parallel computing 

 
8. Conclusions 
 The multigrid method with and without the parallel computing 
and the single grid method with and without the parallel 
computing are studied. The program is firstly validated by 
comparing the results at Re=1000 with [1] and very good 
agreement is found. Without parallel computing, the efficiency of 
the multigrid technique is estimated by comparing the computing 
time of the single grid against multigrid, the multigrid technique 
uses about 5 times less computing time than the single grid. The 
performance of parallel multigrid is evaluated by comparing the 
time consumption of the multigrid technique with a single 
processor versus the single grid parallel computing. With parallel 
computing, the multigrid method is about 7 times faster than the 
single gird method. However, the parallel multigrid with 8 
processors is slightly faster than the sequential multigrid 
algorithm. For the parallel multigrid with 2 and 4 processors, the 
sequential multigrid algorithm is faster than the parallel multigrid. 
In brief, this present work with limited resource(hardware) and the 
parallel computing in conjunction with the multigrid technique can 
improve significantly an overall efficiency. The efficiency can be 
improved by increasing the number of processing nodes and an 
enhancement of the parallel multigrid scheme still has been 

 

 
Fig. 6 Multigrid and single-grid result on a single processor 

  
 



  
 

carrying on until to reach an extreme performance. In the future 
work, the study will be focused on the 3D turbulence flow 
simulation and the number of processing nodes is up to 16 nodes 
and hence the parallel multigrid computation will be improved to 
acquire a high efficiency as possible as. 
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