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Abstract

A finite element method for analysis of pollutant dispersion in
shallow water is presented. The analysis is divided into two parts:
(1) computation of the velocity flow field and the height of the
water, and (2) computation of the pollutant concentration field
from the dispersion model. The method is combined with an
adaptive meshing technique to increase the solution accuracy, as
well as to reduce the computational time and computer memory.
The capability of the combined methed is demonstrated by
analyzing pollutant dispersion in Chaopraya river near the gulf of

Thailand.

1. Introduction

Nowadays, both the industrial and urban zones in Thailand
have increased rapidly. The discharge of thermally or chemically
polluted water from power stations, industrial plants, and
households into rivers has become threat to water resources.
Authorities now require proof that the environmental impact of a
planned discharge will not exceed a certain level, and plant
designers must keep the impact below the specified level. For
this reason, both authorities and plant designers have strong
interest in reliable methods for predicting the distribution of
pollutants resulting from a given discharge into a river.

The behavior of the pollutant dispersion in shallow water is
governed by the conservation of mass and momentums, and the
pollutant transport equation. The analysis may be considered as
two-dimensional depth-averaged problem by assuming constant
velocities over the depth with their values equal to the depth-
averaged velocities. The above governing differential equations
are coupled and nonlinear, and thus cannot be solved by
analytical method especially for complex flow geometry. Several
computational methods have been proposed in the past. These

include the finite difference method [1-5], the finite volume

The finite

element method is widely used currently because it can handle

method [6-7] and the finite element method [8-12].

complex gecmetries effectively [12].

The accuracy of solution by the finite element method mainly
depends on element sizes. High solution accuracy is cbtained if
small clustered elements are used in the model. However, the
computational time and computer memory are increased if a
large number of elements is used. Adaptive meshing technigue
[13-14] can be applied to increase the analysis solution accuracy,
and to reduce the computational time and memory. The
technique places small elements in the region of large change in
the solution gradients to capture accurate solution, and at the
same time, places larger elements in the other regions where the
solutions are nearly uniform.

The paper starts by explaining the finite element formulation
and the corresponding solution procedure that leads to the
development of computer programs. The basic idea behind the
adaptive meshing technique is then described. Finally, the
efficiency of the combined method is demonstrated by example of

pollutant dispersion in Chaopraya river.

2. The Flow Model
2.1 Governing Equations

The governing equations that explain the flow behavior of
shallow water flow can be derived by averaging the mass and
momentum conservation equations in two-dimensional over the

depth. These equations are [15],
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where H is the total water depth, u and v are the depth-

averaged velocity components in x and y directions,

respectively; g is the gravitational acceleration; and C is the
Chezy friction coefficient. The stress components o, O'y s ‘Exy

and T are defined by,
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and where { is the elevation of the water surface over the mean
surface level as shown in Fig. 1, v is the kinematics viscosity
which can be written in form of the viscosity, L , and density,

P, as

Vv =

i
- (3)
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The differential equations, Egs. (1a-c), are to be solved with
appropriate boundary conditions which are either specifying

depth-averaged velocity compoenents along edge 8,

U= uxy) (4a)
v o= v (xy) (4b)

or surface tractions along edge S,
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where # and m are the direction cosines of the unit vector

normal to the boundary edge.

2.2 Finite Element Formulation

The basic unknowns for the shallow water flow problem
correspending to the continuity equation (1a) and the two
momentum equations (1b-c) are the depth-averaged velocity
components u, v and the water surface elevation . The six-

node triangular element suggested in Ref. [16] is used in this

study. The element assumes quadratic interpolation for the
velocity component distributions and linear interpolation for the
water surface elevation distribution according to their highest

derivative orders in the differential Eqgs. (1a-c) as,
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where [3 =1,2,...,6, u=123 NB and HH are the element
interpolation functions for the velocity and water surface
elevation, respectively.

To derive the finite element equations, the method of
weighted residuals [17] is applied to the momentum Egs. (1b-c)

and the continuity Eq. (1a),
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where A is the element area. Applying Gauss’s theorem [17] to
Egs. (7a-b) for generating the element boundary integrals. That
leads to the finite element equations which can be written in

tensor form as.,
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where the coefficients in these equations are in form of the

element interpolation functions.



The finite element equations, as shown in Eqgs. (8a-c}), are
nonlinear to be solved by an iterative procedure. The Newton-
Raphson iteration method is selected in this study. The method

requires writing the unbalance values in the form,
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Then application of the methed leads to a set of algebraic

equations with incremental unknowns in the form,
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where the coefficients in the above equations are,
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These coefficients which are in form of element matrices can
be evaluated in closed-form for triangular elements ready for
computer programming. Details of the derivation for these
element matrices are omitted herein for brevity. In these Eqgs.

(11a-g), u, and v, are the values of the velocity components at
the i" iteration. The iteration process is terminated if the change
in percentage of the overall errors of the nodal unknowns from

the previous iteration is less than the specified value.

2.3 Adaptive Meshing Technique

The idea behind the adaptive meshing technique presented
herein is to construct a new mesh based con the solution obtained
from the previous mesh [14]. The new mesh consists of small
elements in the regions with large change in solution gradients
and larger elements in the regions where the change in solution
gradients is small. For brevity, description of the adaptive
meshing technique is omitted herein, but detail can be found in

Refs, [14,17].

3. The Dispersion Model

3.1 Governing Equation
The depth-averaged pollutant transpert equation is

decoupled from the associated shallow water flow equations (1a-

¢) and is given by [15],
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where @ is the pollutant concentration, and D is the dispersion
coefficient. This differential equation is to be solved together with
the boundary conditions that may consist of specifying the

concentration,

@ = 0O.(xy) (13)
or its gradient,
%G
- q,(x.y) (14)
on

and the initial condition of,

O(x,y,0) = O (15)
3.2 Finite Element Formulation
The distribution for the element concentration is first

assumed as,
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where LN(x,y)_J are the linear interpolation functions. Applying
(1%3)



the method of weighted residual and substituting Eq. (16) into Eq.

(12) lead to the finite element equations in the form,
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3.3 Time Discretization
The explicit recurrence relations [17] are applied for time

integration of Eq. (18). The application leads to,
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which can be solved directly for all nodal values of the pollutant

concentration ® in the flow domain.

4. Application to Chaopraya River
4.1 Flow in the River

The geometry of the Chaopraya river is shown in Fig. 2.
Figure 3 shows the finite element model and the boundary
conditions with the inlet velocity of 1.5 m/s, kinematics viscosity
c=50/m/s , and the

gravitational acceleration g=9.81 mits®

v=15 mzls , Chezy coefficient
This initial finite element
mesh consists of 4,111 nodes and 1,948 elements.

The numerical solution obtained from the initial mesh is then
used to construct the second adaptive mesh as described in
section 2.3. The second adaptive mesh consisting of 4,153
nodes and 1,954 elements is shown in Fig. 4. The figure shows
smaller elements are generated

in the regions where large

change in velocity gradients occurs. At the same time, larger
elements are generated in the other regions where the velocity is
nearly uniform. With this second adaptive mesh, the entire
procedure is repeated again to generate the third adaptive mesh

with 3,411 nodes and 1,584 elements as shown in Fig. 5. The

corresponding flow solution and its detail are shown in Figs. 6

and 7, respectively.

4.2 Dispersion in the River

Contamination due to pollutant discharged from an industrial
plant is studied. Figure 8 shows the boundary conditions with the
initial condition of no pollutant concentration throughout the
computational domain. The dispersion coefficient is given as
83m’is . The final adaptive mesh of the flow model as shown in
Fig. 5 is used as finite element mesh for the dispersion analysis.
Figure 9 shows the computed concentration contours in the river
at three hours after the plant disposal. Detail of distribution of

pellutant concentration near the plant is also shown in Fig. 10.

5. Concluding Remarks

This paper presents the finite element method for analysis of
pollutant dispersion in shallow water. The finite element
formulation and its computational procedure is first described.
The corresponding finite element equations are derived and the
corresponding computer programs that can be executed on
standard personal computer have been developed. The finite

element method is combined with the adaptive meshing
technique to improve the flow solution accuracy. The adaptive
meshing technique generates an entirely new mesh based on the
solution obtained from a previous mesh. The new mesh consists
of clustered elements in the regions with large change in the
velocity gradients to provide higher solution accuracy. At the
same time, larger elements are generated in the orther regions to
reduce the computational time and computer memory. The
results in this paper have demonstrated the capability of the
combined method for the prediction of pollutant dispersion

behaviors.
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Fig. 1 — The notation of shallow water problem
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Fig. 2 — Computational domain of Chaopraya river
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Fig. 3 — Initial finite element mesh and boundary conditions

for flow in Chaopraya river



Fig. 4 — Second finite element mesh for flow in Chaopraya river
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Fig. 5 — Third finite element mesh for flow in Chaopraya river

Fig. 8 — Predicted velocity distribution for flow in Chaopraya river

Fig. 7 — Detail of predicted velogity distribution for flow in

Chaopraya river
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Fig. 8 — Computational domain and boundary conditions

for pollutant dispersion in Chaopraya river

Fig. 9 — Predicted distribution of pollutant concentration
for pollutant dispersion in Chaopraya river

at three hours after the plant disposal
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Fig. 10 — Detail of distribution of pollutant concentration
for pollutant dispersion in Chaopraya river

at three hours after the plant disposal



