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Abstract 
 Inertial stabilization systems or camera gimbal is a device that be set up into the aircraft structure. 
The motion control of camera gimbal can be divided into 2 parts. The first part is a feedback control 
system in order to move the gimbal according to a reference command and the second part is the 
tracking moving objects in video. This paper presents an approach to the image tracking for an inertial 
stabilization system. This method is the real-time tracking of non-rigid objects seen from a moving camera. 
The computational module is based on the Continuously Adaptive Mean-shift (CAMshift) iterations and 
finds the most probable target position in the current frame. The CAMshift algorithm applications can track 
object presenting strong modifications of shape. We can quote the management of the target appearance 
changes during the sequence. The experimental results illustrate that the pan-tilt camera can 
automatically follow the moving target and record it. The control loop for the pan-tilt unit was developed 
that would send rate commands to move the camera position in order to keep the target in the center of 
the camera image.  
Keywords: Inertial Stabilization / Gimbal / Visual Object Tracking / CAMshift 
 

1. Introduction 
 Unmanned Aerial Vehicle (UAV; also 
known as a remotely piloted vehicle) is a radio 
control aircraft equipped with video camera. Its 
initial occupation has been progressing to useful 
role such as Reconnaissance and Surveillance. In 
Fig.1, the current process for visually tracking a 
target with a pan-tilt camera mounted on UAV 
requires two operators. One operator controls the 
UAV while the second with a joystick and display 

can provide control commands to the camera 
gimbal. These two people must work together and 
continuously communicate in order to keep the 
camera aimed at the target. 
 Most target trackers are automatic, in 
which video imagery is processed to estimate 
target location. Automatic target trackers require a 
target recognition process, or manual operator, to 
initially acquire the target. The tracking process 
thus begins when the tracker is informed that a 
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selected portion of a video image represents a 
target. 

 
Fig. 1 Overview of Visual Target Tracking 

 The motion control of camera gimbal can 
be divided into 2 parts. The first part is controlled 
by a feedback control system in order to move the 
gimbal according to a reference command and in 
the same time to stabilize the gimbal where the 
camera is attached. The second part is the 
stabilizing of images done by an image 
programming technique and autonomous tracking 
objects in video sequences, which will be focused 
on this paper. 

 
Fig. 2 Motion control of Inertial Stabilization 

Systems 
 There are numerous methods that have 
been developed to solve the object tracking 
problem. Many approaches are based on the 
visual primitives tracked in images by employing 
correlation. Other techniques process the 
movement of the object in order to track it in the 
images sequence [6-8]. For tracking Objects from 
Mobile Platforms, Cohen and Medioni address the 

detection and tracking of moving objects in a 
video stream obtained from a moving airborne 
platform in their publications [9], [10]. Bell et al. 
claim that their system is able to follow multiple 
objects while maintaining the identity of each 
object [11]. 
 The Regional Center of Robotics 
Technology at Chulalongkorn University has been 
extending the capabilities of camera gimbal. Some 
Previous capabilities include researching for 
gimbal structure and the controller design [12-14]. 
 This paper presents the Continuously 
Adaptive Mean-shift algorithm (CAMshift). It is a 
method to the real-time tracking of non-rigid 
objects seen from a moving camera based on 
visual features such as color, whose statistical 
distributions characterize the object of interest. 
The proposed tracking is appropriate for a large 
variety of objects with different color patterns, 
being robust to partial occlusions, clutter, rotation 
in depth, and changes in camera position. 

2. Object Tracking Using CAMshift 
2.1 The CAMshift Algorithm 
 In 2003, Allen et al. use an algorithm 
known as the CAMshift Algorithm, which is an 
adaptation of the Mean-Shift algorithm, for object 
tracking [2]. The principle of the CAMshift 
algorithm is given in [1], [2] and [4]. For each 
video frame, the raw image is converted to a color 
probability distribution image via a color histogram 
model of the color being tracked. The center and 
size of the color object are found via the CAMshift 
algorithm operating on the color probability image. 
These new centre and size are employed to place 
the search window in the next image. This 
process is then repeated for a continuous target 
tracking in the video sequence. 
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 The CAMshift algorithm thus employs a 
2D probability distribution image produced from a 
back-projection of the target histogram with the 
image to process. The CAMshift calls upon the 
MeanShift one to calculate the target centre in the 
probability distribution image [5]. It is a matter of 
finding a rectangle presenting the same moments 
as those measured on the probability image. 
These parameters are given from the first and 
second moments [1], [3]. 
 The main focus of our works was the 
development of control laws to make autonomous 
visual tracking of any target. We have 
implemented is primarily based on the CAMshift 
algorithm. The steps of this algorithm are stated 
as follows [1] : 
   1. Set the region of interest (ROI) of the 
probability distribution image to the whole image. 
   2. Choose an initial location of the 2D Mean 
Shift search window. The selected location is the 
target distribution to be tracked. 
   3. Calculate a color probability distribution in the 
2D region centered at the search window location 
in an ROI slightly larger than the mean shift 
window size. 
   4. Iterate Mean Shift algorithm to find the center 
of the probability image. Store the zeroth moment 
(distribution area) and center location. 
   5. For the following frame, center the search 
window at the mean location found in Step 4 and 
set the window size to a function of the zeroth 
moment. Go to Step 3. 
 Fig. 3 demonstrates Block diagram of 
CAMshift algorithm. This algorithm is a 
generalization of the Mean Shift algorithm, 
highlighted in gray in Fig. 3. 
2.2 The probability distribution image 

The probability distribution image (PDF) 
may be determined using any method that 
associates a pixel value with a probability that the 
given pixel belongs to the target. A common 
method is known as Histogram Back-Projection. In 
order to generate the PDF, an initial histogram is 
computed at Step 1 of the CamShift algorithm 
from the initial ROI of the filtered image. 

 
Fig. 3 Block diagram of CAMshift algorithm[1] 

 The histogram used in Bradski [16] 
consists of the hue channel in HSV (Hue, 
Saturation, Value) or HSB (Hue, Saturation, 
Brightness) color modal, however multidimensional 
histograms from any color space may be used. 
The histogram is quantized into bins, which 
reduces the computational and space complexity 
and allows similar color values to be clustered 
together. The histogram bins are then scaled 
between the minimum and maximum probability 
image intensities using Eq. (2). 
2.3 Histogram Back-Projection 

Histogram back-projection is a primitive 
operation that associates the pixel values in the 
image with the value of the corresponding 
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histogram bin. The back-projection of the target 
histogram with any consecutive frame generates a 
probability image where the value of each pixel 
characterizes probability that the input pixel 
belongs to the histogram that was used. 

Given that m-bin histograms are used, we 
define the n  image pixel locations 1...{ }i i nx  and 
the histogram 1...ˆ{ }u mq . We also define a function  

2: {1... }c m  that associates to the pixel at 
location the *

ix  histogram bin index *( )ic x . The 
unweighted histogram is computed as 

 *

1

ˆ ( )
n

u i
i

q c x u            (1) 

The histogram bin values are scaled to be within 
the discrete pixel range of the 2D probability 
distribution image using  

 1...

255
ˆ ˆmin ,255

ˆmax( )u u u mp q
q

 .        (2) 

That is, the histogram bin values are rescaled 
from [0,max( )]q  to the new range [0,255],  where 
pixels with the highest probability of being in the 
sample histogram will map as visible intensities in 
the 2D histogram back-projection image. 
2.4 Mass Centre Calculation for 2D Probability 
Distribution 
 For discrete 2D image probability 
distributions, the mean location (the centroid) 
within the search window of the discrete 
probability image computed in Step 3 is found 
using moments [1], [16-18]. Given that ( , )I x y  is 
the intensity of the discrete probability image at 
( , )x y  within the search window. 
Compute the zeroth moment 
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 The direct projection of the model 
histogram onto the new frame is known to 
introduce a large bias in the estimated location of 
the target and the measurement is known to be 
scale variant. 
2.5 Target Model for Localization 
2.5.1 Weighted Histogram 
 The initial selected region contains some 
pixels from outside the object (background pixels), 
our 2D probability distribution image will be 
influenced by their frequency in the histogram 
back-projection. In order to assign higher 
weighting to pixels nearer to the region center, a 
weighted histogram may be used to compute the 
target histogram [20] 

 2* *

1

ˆ ( )
n

u i i
i

q k x c x u           (3) 

 The resulting histogram is scaled using Eq. 
(2) for the discrete quantities we are using and 
( )k x  is any convex, monotonically decreasing 

kernel profile that assigns higher weight to pixels 
near the centre of the normalized search window. 
The most simple kernel profile used to generate 
the background-weighted histogram in our 
experiment is shown in Eq. (4) 

 
1 , 1

( )
0 ,

r r
k r

otherwise
         ...(4) 

It is worth noting that since the Mean Shift 
iterations are based on moment calculations and 
do not require an estimate of the probability 
density gradient, the selected kernel profile does 
not need to be differentiable or have a constant 
derivative (kernels with Epanechnikov profile, for 
instance). 
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2.5.2 Ratio Histogram 
 The weighted histogram selected in 2.5.1 
is not sufficient to identify the target when 
histogram back-projection is used to generate the 
2D probability distribution image. In a sequence of 
experiments it has been observed that if the target 
histogram contains a significant number of 
features that belong to the background image or 
neighboring objects, target localization and scale 
cannot be accurately determined. 
 A ratio histogram can help to solve the 
background problem by assigning color features 
that belong to the background with lower weights 
[20]. In our experiment, we compute a histogram 
for a region outside the normalized target location 
using a kernel a with the following profile 

 
,1

( )
0 ,

ar r h
k r

otherwise
           (5) 

Where a  is a scaling factor and h  is the 
bandwidth of the new search window. A 
background region that is two times as large as 
the target region ( 3)h  was used in the 
experiment. A histogram 1...

ˆ{ }u mO  is computed 
using Eq. (3) with a bandwidth h  and then 
weighted using Eq. (6) where *Ô  is the smallest 
nonzero entry  
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The background-weighted histogram used in our 
experiment is therefore given as  

     2* *

1

ˆˆ ( )
n

u u i i
i

q w k x c x u          (7) 

2.6 Orientation and Scale Calculation 
 The use of moments to determine the 
scale and orientation of a distribution in robot and 
computer vision is described in Horn [17]. 
 The orientation ( )  of the major axis and 
the scale of the distribution are determined by 

finding an equivalent rectangle that has the same 
moments as those measured from the 2D 
probability distribution image [1], [17]. Defining the 
first and second moments for x and y 
 2

20 ( , )
x y

M x I x y  

 2
02 ( , )

x y

M y I x y  

 11 ( , )
x y

M xyI x y  

The first two eigenvalues (the length and width of 
the probability distribution) are calculated in closed 
form as follows. From the intermediate variables a, 
b and c  
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Then the object orientation, or direction of the 
major axis, is 

 11
tan
2

b

a c
           (8) 

The distances 1l  and 2l  from the distribution 
centroid (the dimensions of the equivalent 
rectangle) are given by,  

 
2 2

1

( ) ( )

2

a c b a c
l           (9) 
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2

a c b a c
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Where the extracted parameters are independent 
of the overall image intensity. 

3. The Controller Design 
 At Regional Center of Robotics 
Technology, Previous capabilities include 
researching for the controller design. The robust 
inverse dynamics control and sliding mode control 
with the indirect stabilization control configuration 
is used to control the overall system, so that the 
gimbal camera can track the reference trajectory 
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or maintain its line of sight (LOS) while 
disturbances and base motion [12-14] 
 In this paper, the robust inverse dynamics 
control is selected for a feedback control system 
in order to move the gimbal according to a 
reference command , ,d d dq q q . The reference 
command is generated from the Image tracking 
part.  
3.1 Robust Inverse Dynamics Control  
The control vector will be expressed by: 
  ˆ ˆ( ) ,q y q q  D N           (11) 
where   ˆ ,q qN  is the estimate of:   
    ( , ) sgn ( )sq q q q q C F g  
  ˆ qD  is the estimate of  qD  
In this expression, q  is the vector of joint angles, 
  is the torque vector applied to the joints,  qD  
is the inertia matrix, ( , )q qC  is the vector of 
centripetal and Coriolis forces, sF  is an 
approximated friction forces.  sgn 1q    when q  

is positive and  sgn 1q    when q  is negative. 
( )qg  is the vector of gravitational forces and 

function. 
The input y  can be selected as usual: 

 
0

t

d D P Iy q K q K q K qdt w              (12) 

Where dq q q  , The gain , ,P D IK K K  will be 
selected. The term w  is to be designed to 
guarantee robustness to the effects of uncertainty. 
The term w  is described in [12]. 
3.2 The Controller for tracking Objects from 
Mobile Platforms 
 Our control system was developed to 
accomplish a goal; the control loop can control the 
camera position in order to keep the target in the 
center of the camera image. 

 From the CAMshift algorithm, we are 
tracking a target that is moving across the view of 
a video camera. At each frame, we make a 
determination of the location of this target or find 
an estimate of the position of the target. This 
estimation is not likely to be extremely accurate. 
The reasons for this are many. They may include 
approximations in earlier processing stages, 
inaccuracies in the sensor, the apparent changing 
of shape, or issues arising from occlusion. We can 
think of all these inaccuracies, taken together, as 
simply adding noise to our tracking process. 
 The machinery for accomplishing the 
estimation task falls generally under the heading 
of estimators, with the Kalman filter being the 
most widely used technique. Thus, we choose the 
CAMshift algorithm and Kalman filter to find an 
estimate of the position of the target. 
 In digital imaging, a pixel (or picture 
element) is a single point in an image. Pixels are 
normally arranged in a 2-dimensional grid 
(columns, rows). The display resolution of the 
images is simply the physical number of columns 
and rows of pixels creating the display (e.g., 
640x320).  

 
Fig. 4 Shifting of the Mean-Shift tracking window 

towards higher average weights. 
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 In Fig.4, the display resolution of the 
image is n nX Y . The center of the image is a 
haft of the display resolution of the image 

,
2 2
n nX Y . From the CAMshift algorithm, we know  

the pixel location of the target on each video 
frame. If we know the movement of target in the 
image, we can generate the reference command 
of the pan-tilt camera. 
 If the target move in X axis (columns of  

pixels), the camera gimbal must be control to 
move in azimuth axis (pan the camera). Similarly, 
the target move in Y axis (rows of pixels), the 
camera gimbal must be control to move in pitch 
axis (tilt the camera). 
 Fig. 5 shows the block diagram of the 
robust inverse dynamics control and the real-time 
image tracking is added to detect the non-rigid 
target seen from the camera gimbal. 
 

 

 

Fig. 5 The block diagram of the robust inverse dynamics control with the real-time image tracking 
 

4. Experiment and result 
 We have applied our method on various 
video sequences. The 640x320 images illustrate 
some obtained results. The search window is 
initially centered at the position of the object in 
the image. Initial regions for the video sequences 
were manually selected by clicking mouse. The 
program will draw a rectangle around the target 
area of interest. The histograms were selected in 
the HSV color space. The target histograms were 
initialized and scaled to image intensity range. A 
background region (search window) that is two 
times as large as the target region was used in 
the experiment. The algorithm runs comfortably at 
30 fps on a 2 GHz notebook. 
 
4.1 Tracking with fixed camera 

 This section describes the results 
obtained from experiments with the object 
tracking module.  The camera gimbal is fixed. 
 The video sequence shown in Fig. 6-7 
was used to demonstrate object tracking through 
occlusion as well as the scale and orientation 
estimation. 

 
Fig. 6 Tracking the color rubber 

 By performing several scaling operations 
automatically, the tracker furthermore showed its 
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capability to react to different scaling 
requirements correctly. The color rubber was 
tracked 100% of the time successfully. In Fig. 7, 
the tracker can track the car through occlusion if 
the tracked car is hided only a partial part. 

 
Fig. 7 Tracking the car through occlusion 

 Fig. 8 demonstrates the similar object-
tracking. The tracked target looks very similar to 
at least two of the other targets it passes during 
the video sequence. 

 
Fig. 8 Tracking the similar objects 

 For the experiment shown in Fig. 8, the 
tracked van looks very similar to the other van. 
The CAMshift tracker kept up with the tracked 
van to be tracked until the tracked van is moved 
closely the other van. The miss tracking problem 
is happened, if two vans are in the region of 
interest (ROI) of the tracked object. The tracker 

can’t decide that the right van or left van is the 
target because both of vans can be the target. 
Sometime the tracker chooses the right van and 
sometime it chooses the left van. For fault 
detection, the operator can select the correct 
target again. 
4.2 Tracking with controlled camera 
 The objective of this section is to 
maintain the camera position in order to keep the 
target in the center of the camera image. Robust 
inverse dynamics control is implemented. To test 
the tracking capability, the reference trajectory 
, ,d d dq q q  is generated from the image tracker 

part. 
 The experimental results show that the 
gimbal can be controlled in order to keep the 
target in the center of the camera image. 

 
Fig. 9 Tracking the car, using 

 the controller with image tracking. 
4.3 Tracking Objects from Mobile Platforms 
 In field test, the camera gimbal is 
mounted on the aircraft structure. In laboratory, 
the camera gimbal is mounted on the trust frame 
and hand truck. The video is recoded from the 
top floor on the high building while the hand truck 
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is push forward. In this section, the objective of 
the control is similarly in section 4.2, but the 
gimbal is set up into the mobile platform, as 
illustrated in Fig. 10. 

 

Fig. 10 The gimbal mounted on the  
mobile platform 

 The gimbal is hung freely, so that a base 
rate disturbance can be generated to emulate 
close to the real situation. The controller must 
track the input and reject the base rate 
disturbance at the same time. The disturbance is 
in the form of moving the base. 

 

Fig. 11 Tracking the target from mobile platform. 
 

 In Fig.11, the experimental results show 
that the robust inverse dynamics control with the 
image tracking control performs very effective for 
our inertial stabilization system, and is very 
promising controller. The gimbal can be controlled 
in order to keep the target in the center of the 
camera image. 

5. Conclusion 
 We have proposed in this paper an object 
tracking approach in color images sequences, 
based on the CAMShift algorithm. The CAMshift 
shifts its estimate of the target location. So, we 
can generate the reference command of the pan-
tilt camera from the target location. The details of 
the controllers, the robust inverse dynamic with 
CAMshift algorithm, of a two-axis gimbal 
configuration is described. The capability of the 
tracker to handle in real-time target scale 
variation, partial occlusion, and significant clutter, 
is demonstrated. The experiment results are 
presented to verify the effectiveness of the 
proposed method in image tracking object. The 
control loop can move the camera position in 
order to automatically follow the moving target 
and keep the target in the center of the camera 

image.  
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