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Abstract 
The Finite element method and photoelasticity 

technique are presented to predict the stress distribution 
for contact mechanics problems. The paper first describes 
2D contact mechanics theory. Next, the finite element 
formulations based on the combination of Lagrange 
multiplier and Penalty method are presented, The 
computational procedure and its boundary conditions are 
then represented. The photoelasticity theory and its 
procedure are also explained. To assess the validation and 
efficiency of both techniques, the displacement and stress 
distributions for two circular plates contact problem and 
circular–flat plate contact problem will be predicted by 
using finite element method and compared to those 
results gained from photoelasticity technique and 
analytical solutions. The solutions show that the stress 
distributions predicted by finite element method are in 
good agreement with the photoelasticity and analytical 
results. 
 
1. Introduction 
 In solid mechanics problems, the contact condition 
between two surfaces is one of important factors that 
affects the maximum stress in static loading or wear in 
dynamic loading. A correct understanding in the contact 
behavior under static loading can be directly 
implemented on the product design and can be extended 

to use with the contact behavior under dynamic loading 
such as sheet metal stamping process.  The finite element 
method is employed to predict the contact behavior for 
several years. Consequently, there are many finite 
element algorithms invented to predict the contact 
behavior in static loading such as Penalty algorithm, 
Lagrange multiplier algorithm and augmented Lagrange 
multiplier, and etc. 
 

This paper studied the capability and performance of 
contact algorithms for solving 2D contact problems.  The 
finite element method for 2D contact mechanics is 
presented. The computational procedure and its boundary 
conditions are shown.  Two contact algorithms (Penalty 
algorithm and Lagrange multiplier algorithm) are used in 
displacement and stress distribution analysis for two 
deformable circles contact together and a deformable 
circle contact with deformable rectangular plate. Then, 
the computational results are validated with analytical 
solution and photoelasticity.  
 
2. Theory 
2.1 Governing differential equation 

Contact mechanics is governed by the equilibrium 
equations, strain–displacement relations and constitutive 
equations. 
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 2.1.1 Equilibrium equations 
     The equilibrium equations can be written in 
variational form  as [1], 

 

 •WS – •WR – •WC  = �� •⊥♠•∅

♠ S
iiijij dSutde  =  0     (1) 

 
where •WS, •WR and •WC are virtual energy of internal 
stress, external force and contact, respectively.  ∅ij, is the 
stress components, •eij is virtual strain, tj is the surface 
traction, and •ui is virtual displacement.  Boundary 
conditions may consist of specifying the surface traction 
[2] as depicted in Fig. 1 as, 

 
                                ∅ijni  =  t1                                         (2) 

 
where ni and t1 are the outward unit normal vector and 
surface traction on the boundary S1 at time t, respectively. 
The boundary condition may include the prescribed 
displacement on the boundary S2 as, 

 
                        ui(x,t)  =  u2(t)                                         (3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Also along the contact boundary S3, the normal 
contact stress should be compressive and the boundary 
should not penetrate into the other as follows, 

 
                        qn(x,t)  =  qc(x,t) ni   =  0                         (4) 

 
                g(x,t)  =  g(x) – u(x,t) ni   =  0                        (5) 

 
where qc(x,t) is the contact traction, qn(x,t) is the normal 
component of contact traction, and g(x,t) is the gap 
between the two boundary surfaces. 
 
 The equation 4 and 5 are the contact conditions of 
Lagrange multiplier method. This method expresses the 
virtual work in the form, 
 

              •WC  =  Ψ Ζ� ↵∴↵•

S
TTNN dSgg                          (6) 

 
where ↵ is the Lagrange multiplier and equivalent to the 
reaction force at contact point. 
 
 The other contact algorithm is Penalty method. It will 
allow very small penetration occurs on contact surface. 
 
                g(x,t)  =  g(x) – u(x,t) ni   =  0                        (7) 
 
                    •WC  =  Ψ Ζ� •∴•÷

S
TTNNN dSgtgg               (8) 

 
 where ÷ is the Penalty parameter, subscript N and T 
mean normal and tangential direction, respectively. 
Equation 8 is valid under slip condition. If the contact 
condition is pure stick then tT = ÷T gT. 
 

2.1.2 Strain-displacement relations 
Contact behavior will occurs small strain and 

normally considered the strain-displacement relations in 
the form, 

 

                             ÷ij  =  Ψ Ζi,jj,i uu
2
1

∴                            (9) 

 
where ÷ij, is the strain components; ui, and uj, are the 
displacement components. 

2.1.3 Constitutive equations 
Contact mechanics has the constitutive equation that 

shows the relation of elastic strain, ÷ij and the elastic 
stress, ∅ij in the form, 

 
                             ∈ ∠∅   =  → °∈ ∠÷C                                   (10) 

 
where → °C  is the elasticity matrix [3]. 
 
2.2 Finite Element Equations 

The weak form of virtual work principle [2] is 
applied to the equilibrium equation 1 and written in 
matrix form as, 
 
                       → °∈ ∠UK   =  ∈ ∠F  + ∈ ∠CF                           (11) 
 
where → °K  is the stiffness matrix, ∈ ∠U  is the displacement 
vector, ∈ ∠F  is the external load vector, and ∈ ∠CF  is the 
load vector of contact force. 
 
2.3 Photoelasticity [4, 5] 
 Photoelasticity technique can be explained with the 
wave theory of light in the form of harmonic waveform. 
 
                        E  =  Ψ ΖtcosA ⊇⊥≠                                (12) 
 

g(xk,t) > 0
qn(xk,t) = 0

g(xj,t) = 0
qn(xj,t) < 0

S1 

S3

S1 
S2 

S2 

S3 

T1(t) 
n

u2(t) 

k
j

Figure 1 – Boundary  conditions  for  contact 
                            mechanics  problem. 
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 where E is magnitude of light wave, A is the wave 
amplitude, ≠ is the phase angle of wave, ⊇ is angular 
frequency, and t is time. 
 

                          ≠  =  Ψ Ζ•∴
↵

℘ z2                                    (13) 

 

                            ⊇ = 2℘f  = 
↵

℘v2                                 (14) 

 
where z is position along propagation axis, ↵ is 
wavelength, • is phase of wave, f is wave frequency and 
v is wave velocity. 
 
 Photoelasticity technique will control light path from 
source through wave plates and measured model is 
located in the middle of them as shown in figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – A photoelastic model in a plane optical 
                        components. 
 
 A wave plate resolve an incident light wave into 
parallel and perpendicular to the axis of polarization. The 
parallel component is transmitted, and the other 
component is internally absorbed. 

After light wave entering photoelastic model under 
loading, the stressed model exhibits the optical properties 
of a wave plate. The incident light wave is resolved into 
parallel and perpendicular to the principal stress 
directions at the point.  After leaving the photoelastic 
model, the two component with different velocities enter 
the wave plate #2 and are resolved again. 
 The leaving light wave has a relative retardation or 
angular phase shift, υ in the following equation. 
 

                 υ  =  •
↵

℘2   =  Ψ Ζ12 nnh2
⊥

↵

℘                      (15) 

 
where h is the wave plate thickness, and n is the 

refractive index of media. 
 The principal stresses is related to the refractive 
index in the form, 
 

                         n2 – n1  =  c(∅1 – ∅2)                            (16) 
 
Equation 18 is called stress–optic law.  c is the relative 
stress–optic coefficient), ∅1 and ∅2  are the major and 
minor principal stress, respectively. 
 After substituting equation 16 into equation 15, the 
equation is in the form, 
 

                            
h

Nf
21

∅

ν∅⊥∅                                (17) 

 
where N is the number of fringes appearing in an 
isochromatic fringe pattern and 

∅
f  is the material fringe 

value. 
 

                            
↵

•
ν

℘

υ
ν

2
N                                   (18a) 

 

                            
c

f ↵
ν

∅
                                           (18b) 

 
3. Examples 
 This paper focuses on two contact algorithms for 
finite element analysis, Penalty method and Lagrange 
multiplier method.  The efficiency of each method is 
studied and compared with analytical solutions in two 
examples. The examples used in this paper are two 
circular plates contact problem  and circular–flat plate 
contact problem. 
 
3.1  Two circular plates contact problem  
 As shown in figure 3, two deformable circles contact 
together.  Force 110.8 N is applied on the top circle while 
the bottom circle lies on the rigid floor. Both circles have 
the same material properties and dimension ie.Young’s 
Modulus E = 952.889 MPa, Poisson’s ratio = 0.38 and 
radius = 25 mm.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Two circle plate contact problem statement. 
 
The contact behavior between two circles is investigated 
and has the solution based on Hertz theory in the form, 

wave plate #2

wave plate #1

photoelastic model 

light source

observer

axis of polarization

axis of polarization

Force

wave plate #2

wave plate #1

photoelastic model 

light source

observer

axis of polarization

axis of polarization

Force

F = 110.8 N 

R1 = 25 mm. 
E1 = 952.889 MPa
∪1 = 0.38 

R2 = 25 mm. 
E2 = 952.889 MPa
∪2 = 0.38 
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Y 
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where a is the contact length and b is the displacement of 
top circular plate in y direction. 

The finite element model consists of 5,360 nodes and 
5,280 elements for half right model.  Figure 7 shows 
detail of elements near contact surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Finite element model around contact surface. 
 
 Applied forces are set at 27.7 N, 55.4 N, 83.1 N, and 
110.8 N following force scale of photoelasticity 
equipment. The deformation solution is compared with 
Hertz theory.  Figure 5 shows the relation of contact 
length and applied forces.  The solution error of the 
Penalty method is 0.7%, which much less than that of 
Lagrange multiplier method (10%).  Figure 6 displays 
displacement along y axis depending on applied force. 
When comparing the solutions with hertz theory, Penalty 
and Lagrange multiplier show the proximate level of 
accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           Contact length (mm.) 

Figure 5 – Plot of applied force and contact length. 
 

 Although, the more accuracy of solution can be 
obtained by reducing the element size around the contact 
surface, however, the smaller element size, the more 
expense in CPU time and space storage are required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 Displacement along y axis (x 10-3 mm.) 
 

Figure 6 – Plot of applied force and displacement 
                        in y axis. 
 
 For stress analysis, the solutions from both Penalty 
and Lagrange multiplier method are the same.  Figure 7 
expresses the normal stress and distance in y direction.  
Figure 8 displays the normal stress y along the 
circumference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Plot of normal stress y along y axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                          Distance along s direction (mm.) 

Figure 8 – Plot of normal stress y along s direction. 
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Figure 9 Comparison of max shear stress between 
photoelasticity result and finite element method solution. 
 
 Figure 9 shows the maximum shear stress contours of 
the photoelasticity result and finite element solution 
based on 110.8 N applied on the top circle. As the result 
suggested, both results have a good agreement. 
 
3.2  Circular–flat plate contact problem 
 A circular plate is applied force in y direction and 
contacts a deformable flat plate as shown in figure 10.  
Because of symmetry, the finite element model is 
generated only the right half of the model and consists of 
5,580 nodes and 5,450 elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

unit: mm. 
Figure 10 – Circular–flat plate contact problem statement. 
 

Stress and displacement behavior near the contact 
surface are based on contact mechanics theory, while the 
behavior at the bottom edge of flat plate is based on 
bending theory.   

The finite element solution agrees well with the 
result from photoelasticity technique as shown by 
maximum shear stress contours in figure 11. 

According to the results of the Penalty and Lagrange 
multiplier method, the accuracy of both methods is 
equally the same as shown in figure 12–15. 

Contact lengths and displacement along y axis will 
increase as the applied forces increasing as shown in 
figure 12 and 13. 

 The maximum normal stress in the y direction will 
occur at a contact point (y = 0 mm.) and will decrease 
when the distance is far away as shown in figure 14 and 
15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 – Comparison of max shear stress between 
photoelasticity result and finite element method solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                 Contact length (mm.) 

 
Figure 12 – Plot of applied force and contact length 
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                   Displacement along y axis (x 10-3 mm.) 
 

Figure 13 – Plot of applied force and displacement 
                          in y axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 –  Plot of normal stress y along y axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       Distance along s direction (mm.) 
 

Figure 15 – Plot of normal stress y along s direction. 

 
4. Conclusions 
 This paper presents the finite element method and 
photoelasticity method for solving the contact mechanics 
problem. Case studies are two circular plate contact 
problem and circular–flat plate contact problem. Results 
show that the Penalty and Lagrange multiplier method 
can be used to predict the contact behavior efficiently.  
Computational results are compared with the Hertz 
theory and photoelasticity result and have a good 
agreement. 
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