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Abstract
A two dimensional boundary element method (BEM)
formulation based on an initial strain approach has been
successfully implemented for creep problems with
variable loads. The time hardening and strain hardening
creep problems of a square plate and a plate with a
circular hole are investigated for primary creep using
isoparametric quadratic elements to model the boundary
with 3-node boundary elements, and to model the interior
domain with 8-node quadrilateral cells. The results of the
problems are compared with the finite element solutions
using MSC.Marc software and the analytical solutions
where available and shown to be in good agreement.
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1. Introduction
The boundary element method (BEM) has been

widely used to analyse both elastic and time-dependent
inelastic engineering problems. Telles and Brebbia [1]
presented the BEM formulation based on an initial strain
approach for 2-D elastoplastic problems. Linear
interpolation functions were employed for the boundary
elements and the internal triangular cells. The von Mises
yield criterion and the Prandtl-Reuss flow rule were
applied for the plastic strain increment. The problems of a
perforated aluminium strip under uniaxial tension, a
polystyrene crazing problem under uniaxial and biaxial
tension and plate strain punch were analysed. The results
were compared and agreed well with the FEM and
experimental results. Lee and Fenner [2] have presented
the isoparametric quadratic boundary element
formulation for two-dimensional elastoplastic analysis
based on an initial strain approach. The problems of
uniaxial tensile behaviour, bending behaviour, internally
pressurised cylinder, perforated plate in tension, and
uniaxial behaviour in cyclic plasticity were analysed. The
results were compared to and agreed well with the
analytical solutions, experimental results and the FEM.
Banerjee and Raveendra [3] have proposed the boundary
element formulation based on an initial stress approach
for 2-D and 3-D elastoplastic problems. The quadratic
isoparametric representation was used to model the
boundary elements and the volume cells. The problems of
2-D and 3-D thick cylinder and 3-D thick sphere under
internal pressure, 2-D and 3-D perforated strip under
tension and 2-D notched plate under axial tension were

analysed. The results agreed well with the FEM and
experimental results. Telles and Brebbia [4] have
presented the boundary element formulation based on an
initial stress approach for 2-D (plane stress and plane
strain) and 3-D viscoplasticity and creep problems.
Euler’s formula was used for time integration. The
problems of a deep beam under uniform load, a thin disc
under constant external edge load and a plate under
thermal shrinkage were solved and compared with the
FEM and the analytical solutions showing good
agreement. Cathie and Banerjee [5] have presented the 3-
D boundary element method for inelastic (plasticity and
creep) problems. Two approaches, initial stress and initial
strain, as well as the solution algorithm were introduced.
A combined creep law which included both time
hardening and strain hardening creep laws has been
presented. The problems of square plates with and
without holes under constant uniaxial and biaxial tension
and a thick cylinder under internal pressure were
analysed using a power law creep function. The boundary
geometry and unknowns were represented by quadratic
elements. The forward difference approximation (Euler)
was implemented for time integration. The results agreed
well with the exact solutions.

In this paper a BE formulation for creep and time-
dependent material behaviour based on an initial strain
approach is presented using Norton-Bailey creep laws.
The time hardening and strain hardening problems are
investigated. Isoparametric quadratic elements are used
for the boundary element and domain cells.

2. The 2D boundary element formulation for creep
problems
2.1 Integral equation for creep problems

The BE formulation for creep is based on an initial
strain approach which has the same form as that used for
plasticity by replacing plastic strain rates by creep strain
rates as follows (see, for example, Mukherjee [6]):
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where iu& , it&  and c
ijε&  are the displacement, traction and

creep strain rates, respectively. ijU , ijT  and kijW  are the
displacement, traction and third-order kernels,
respectively, which are functions of the position of the
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load point P and the field point Q or the interior point q
and the material properties. Γ and A are the boundary and
surface of the solution domain. The algebraic expressions
for the kernels ijU , ijT  and kijW  can be found, for
example, in Lee and Fenner [7].
2.2 Constitutive models

Two creep power laws, time hardening and strain
hardening, based Prandtl-Reuss flow rule are used and
can be defined as follows (see, for example, Kraus [8]
and Becker and Hyde [9]): For time-hardening:
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                      ( ) ( ) m
m

c
effijm

mn

eff
mc

ij SBm
11

2
3 −−

= εσε&         (3)

where m, B and n are material constants dependent on
temperature. effσ , ijS  and c

effε  are the effective stress,
the deviatoric stress and the effective creep strain,
respectively. The equation (3) can be written in the same
form as equation (2) using the effective time, efft , as
follows:
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The equations (2) and equation (4) can be used for
primary creep where m<1 and for secondary creep where
m = 1. The response of creep strain versus time for time
and strain hardening is shown in solid line in Figure 1.

Figure 1. Time and strain hardening assumptions.

  3. Numerical implementation.
To perform the integration in equation (1)

numerically, the boundary and domain must be divided
into a number of boundary elements and domain cells. It
is convenient to use a new coordinate system that is local
to the element using an intrinsic variable ξ with its origin
at the midpoint node and values –1 and +1 at the end
nodes. Figure 2 shows a typical three-node boundary
element and a typical eight-node quadrilateral domain
cell.

Figure 2. Isoparametric quadratic boundary element and
domain cell.

Since isoparametric quadratic elements are used for
the boundary and domain elements, the geometry and
unknown variables have the same order and can be
described using the appropriate shape functions.
Therefore, the geometry and unknown variables on the
boundary can be written as follows:
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where )(ξcN  is the boundary quadratic shape function
and can be found in Chandenduang [10, 11].

For the domain cells, two-dimensional quadratic
shape functions are used as follows:
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where the domain  quadratic shape functions, ),( 21 ξξcN ,
can be found in Chandenduang [10, 11]:
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The integral equation (1) can be discretised into
boundary elements and domain cells, and written in terms
of the local coordinates as follows:
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where M is the total number of the boundary elements
and D is the total number of the domain cells. c is a node
counter form 1 to 3 for boundary elements and 1 to 8 for
domain cells. )(ξJ  and ),( 21 ξξJ  are the Jacobians of
transformation.

Taking each boundary node in turn as the load point
P and performing the integrations, a set of linear
algebraic equations can be written as follows:

]][[]][[]][[ cWtBuA ε&&& +=            (9)

where the matrices [A], [B] and [W] contain the integrals
of the kernels Tij, Uij, and Wkij, respectively. For two-
dimensional problems, if the total number of boundary
nodes is N and the total number of the domain cell points
is H, then the solution matrices [A] and [B] will be square
matrices of size 2N x 2N, whereas the matrix [W] will be
a rectangular matrix of size 2N x 3H. Unlike the FE
method, all BE matrices are fully populated.

The parameter Cij(P) contributes only to the diagonal
coefficients of the [A] matrix (i.e. when P is equal to Q).
When the points P and Q do not coincide, the standard
Gaussian quadrature can be used.

4. Convergence criterion
The Euler method is used to update the variables at

each time step as follows:

iiii ytyy &∆+=+1                   (10)

where y represents the variable to be updated and ∆t is the
time step.

Although it is relatively simple to implement, the
Euler method is a very slow process if a constant time
step is employed. To improve the convergence rate, an
automatic time step control which will automatically
select the next time step for the next calculation is
implemented. The main idea is to compare the error, e, at
each time step, with the two predefined errors or
tolerances, the maximum error, emax, and the minimum
error, emin, as follows:
(i) If e > emax , the current time step is reduced by a
factor of less than 1.0 and the  analysis is repeated.
(ii) If emax > e> emin , the current time step is used for
the next calculation.

(iii) If emin > e , the current time step is increased by a
factor of greater than 1.0 for the next calculation.

The creep strain error which occurs in each time
step can be defined as follows (see, e.g. Mukherjee [6]):
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where c
iε&  is the creep strain rate at i th step and c

iε  is the
total creep strain. Note that the stress rate can
alternatively be used in equation (11) instead of the creep
strain rate. In this paper the norm of the error of the
effective creep strain is used and defined as follows:
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The BE algorithm for creep can be found in
Chandenduang [10, 11].

5. Creep examples
All tests are performed for 100 hours using the

automatic time step control with the maximum and
minimum stress tolerances of 10-3 and 10-4, respectively.
The initial time step of 10-3 hour and 6 integration points
are used. The results are compared with analytical
(Becker and Hyde [9]) and finite element (MSC.Marc
[12]) solutions.
5.1 Square plate

Two cases involving a square plate under tension
are tested. These tests are primary creep and plane stress
conditions. The dimensions of the square plate are 100
mm x 100 mm. The boundary and domain are divided
into 8 boundary elements and 4 cell, respectively, as
shown in Figure 3. The material properties and creep
parameters (based on stress in MPa, time in hour) are as
follows:

Young’s Modulus (E) = 200x103 MPa
Poisson’s Ratio (ν) = 0.3
B = 3.125x10-16

m = 0.5 for primary creep
n  = 5

The boundary conditions are as follows:
uy = 0 along line ab
ux = 0 along line ad

Figure 3. BE and FE mesh for the square plate (8
boundary elements and 4 cells).
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Details of the tests are listed below:
1. TEST1. The square plate is subjected to a

uniaxial variable constant tensile stress of 200 N/mm2

and 250 N/mm2 in the x-direction. The test is performed
for 100 hours for the first applied stress of 200 N/mm2

and for another 100 hours for the second applied stress of
250 N/mm2. The automatic time step control with the
maximum and minimum creep strain tolerances of 10-3

and 10-4, respectively, is used. The initial time step of 10-3

hour and 6 integration points are employed. Both time
hardening and strain hardening are applied. The creep
strains in the x-direction are plotted against time and
shown in Figure 4. The results are in good agreement
with analytical solutions for both creep laws with the
error being less than 0.5% and agree well with the finite
element solutions.
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Figure 4. The BE solutions of the square plate under a
uniaxial tensile stress.

2. TEST2. The square plate is subjected to a biaxial
variable constant tensile stress of 200 N/mm2 and 250
N/mm2 in the x- and y-direction. The test is performed for
100 hours for the first applied stresses of 200 N/mm2 and
for another 100 hours for the second applied stresses of
250 N/mm2. The automatic time step control with the
maximum and minimum creep strain tolerances of 10-3

and 10-4, respectively, is used. The initial time step of 10-3

hour and 6 integration points are employed. Both time
hardening and strain hardening are applied. The creep
strains in the x-direction are plotted against time and
shown in Figure 5. The results are in good agreement
with analytical solutions for both creep laws with the
error being less than 0.3% and agree well with the finite
element solutions.
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Figure 5. The BE solutions of the square plate under
biaxial tensile stresses.

5.2 Square plate with a circular hole
A square plate with a circular hole at the center is

analysed. Because of symmetry, only a quarter of the
plate is used. The quarter of the plate with a circular hole
has the dimensions of 10 mm x 10 mm with a hole of a
radius of 3 mm. The boundary and domain are discretised
into 28 boundary elements and 48 cells, respectively, as
shown in Figure 6. The boundary conditions are as
follows:

uy = 0 along line ab.
ux = 0 along line de.

Figure 6. BE and FE mesh for the square plate with a
circular hole (28 boundary elements and 48 cells).

The material properties and the creep parameters are
the same as those used in the square plate tests. The plate
is subjected to a uniaxial variable constant tensile stress
of 40 N/mm2 and 50 N/mm2 in the x-direction. The test is
performed for 100 hours for the first applied stress of 40
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N/mm2 and for another 100 hours for the second applied
stress of 50 N/mm2. The creep strains in the x-direction at
BE node 39 are plotted against time and shown in Figure
7. The results agree well with the finite element solutions.
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Figure 7. The BE solutions of the square plate with a
circular hole under a uniaxial tensile stress.

6. Conclusion
The 2-D boundary element method for creep

problems using isoparametric quadratic elements is
successfully applied to solve the problems of the square
plates and the plate with a circular hole. Two creep power
laws, time-hardening and strain-hardening, are used to
characterise materials. The results are compared with the
analytical solutions and the finite element solutions using
MSC.Marc and show good agreement.
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