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Abstract 
This paper presents an alternative approach for synthesis 
of compliance mechanisms. The compliance mechanism 
is found to be useful particularly for the design of MEMS 
actuators. Rather than being constructed by joining rigid 
bodies with hinges or some other constraints, this 
mechanism can be manufactured using just one piece of 
an elastic plate. The synthesis of such a mechanism can 
be carried out by using topological design. The use of 
radial-basis function interpolation as filtered topological 
design variables is derived. The technique is termed 
Approximate Density Distribution (ADD). The optimiser 
is the Optimality Criteria Method (OCM). The ADD 
method and the sensitivity filtering technique are applied 
to solve two compliance mechanism synthesis problems. 
The results obtained using the present and traditional 
techniques are illustrated, compared and analysed. 
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1. Introduction 
 Topology optimisation is a structural design process 
that is performed in the stage of conceptual design. 
Topological design of structures is traditionally carried 
out by employing finite element analysis and numerical 
optimisers. The design problem can be thought of as the 
art of using limited material whilst having optimum 
design objective. Starting with predefined design domain, 
the structure is discretised to have a great number of 
finite elements. Topological design variables are 
parameters that define a structural topology. The classical 
design variables are finite element densities or 
thicknesses. This means that elements with nearly zero 
densities lead to voids while the others represent material 
existence on the structure. The problem is normally 
classified as large-scale optimisation. The optimisers 
traditionally used to deal with this design problem are 
optimality criteria method, sequential linear programming 
and the methods of moving asymptotes. Evolutionary 
algorithms, although having the advantage with the use of 
1-0 discrete design variables, appear to be ineffective for 
this task due to a large number of design variables [1].  
 According to design objectives, the topology design 
can be classified as, for example, structural compliance 
minimisation, dynamic stiffness (eigenvalue) 
maximisation and maximisation of buckling factor [2]. 
The design strategy can also be applied to synthesise the 

so-called compliance mechanisms. Much work has been 
made and contributed to this research field e.g. [3], [4], 
[5] and [6]. A compliance mechanism, sometimes called 
jointless mechanism, attains mobility through its 
flexibility rather than using hinges, gears or some other 
constraints as its rigid counterpart. The advantages in 
using such a mechanism are that, it needs fewer parts and 
steps to be manufactured and it needs no lubrication. The 
mechanism is useful particularly in MEMS as the use of 
hinges or bearings for micro-scale actuators is rather 
impossible. However, it is also disadvantageous in that 
the mechanism is likely to experience high fatigue and 
stress concentration. Also, it can be a less efficient 
mechanism due to the loss of elastic energy [3].  
 The paper presents the use of Approximate Density 
Distribution (ADD) [7] design variables for topology 
optimisation of compliance mechanisms. The ADD 
technique employs radial-basis function interpolation for 
approximating structural topologies instead of using 
element densities directly. The technique is adapted to be 
used with the OCM and based upon the Solid Isotropic 
Material with Penalisation (SIMP) concept [8]. Two 
compliance mechanism design problems are assigned to 
benchmark the present method. The results obtained from 
using the new technique and that from using the OCM 
with sensitivity filtering technique are illustrated 
compared and discussed. It is shown that the results from 
using the OCM with ADD technique are as effective as 
ones obtained from the OCM with the classical sensitivity 
filtering technique. 
 
2. Topological Design 
 A typical topological design of structures can be 
posed as  
 )(min ρ

ρ
F      (1) 

subject to 
m(ρ) = r.m(1) 
0 < ρ0 ≤ ρ ≤ 1 

where  ρ is the vector of topological design variables 
having ρ0 and 1 as it lower and upper bounds respectively 
 F is an objective function 
 m is structural mass 
and r ∈ (0,1) is the ratio of mass reduction compared to 
the initial mass. 
 The lower bounds are set as small positive values so 
as to prevent singularity in a structural stiffness matrix. 
As stated earlier, the objective functions can be structural 
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compliance, dynamic stiffness and buckling factor. Stress 
and some other structural constraints are excluded from 
the optimisation problem as they can cause some 
difficulties. The constraints, however, are later taken into 
account in the stage of preliminary and detailed designs. 
Numerical difficulties occurring when performing 
topological design are intermediate density leading to a 
stiffened plate rather than a structural topology, 
checkerboard from the instability of finite element 
analysis, and mesh dependency or a variety of optimum 
topologies of one design domain with various mesh 
resolutions, [9], [10]. 
 Figure 1 displays a generic topology optimisation of 
a plate. The plate is subjected to external loads with the 
given boundary conditions. Design domain is where the 
material distribution or topology design variables deal 
with. Voids and unchanged regions can be predefined. 
For linear finite element analysis, structural compliance 
can be computed as 
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where c is structural compliance 
 U is the vector of structural displacements 
 K is a structural global stiffness matrix 
 ue is element nodal displacements 
 ke is an element stiffness matrix 
and  N is the number of structural elements. 
 By using (1) directly, the problems of intermediate 
density and checkerboard can be arisen. In the SIMP 
model, the penalty parameter p is introduced to prevent 
the former problem whereas the sensitivity filtering 
technique is presented to suppress the checkerboard 
patterns. As a result, the compliance objective function 
can be rewritten as [2] 
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and its filtered derivative value is given as [8] 
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where rmin is a parameter to be defined 
 Hf = rmin - dist(e,f) 
and  { }NerfedistNf ,...,1,),(, min =<∈ . 
 

 
Figure 1 topology optimisation 

 For the problem of compliance mechanism 
synthesis, with the predefined input forces, the problem is 
concerned with optimising the displacements at some 
selected nodal points. Thus, the objective function value 
in dependent on desired output displacements. It can be 
somewhat expressed similar to the minimum compliance 
problem as 
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where uout is the desired output displacement 
 and λ is the vector of structural displacements due 
to adjoin loads (see [2]). 
 The elements of the vector λ determine whether the 
problem is maximisation or minimisation. The penalty 
parameter is included to the objective function as in (2) 
and filtered derivatives can be calculated in a similar 
fashion to (3). The optimisation problem is illustrated in 
figure 2. Also note that it is more beneficial to add a 
linear spring to the input and output nodes [8]. 

 
Figure 2 Compliance synthesis 

 
 
 
 
 
3. Optimisers 
 ADD is a simple numerical technique exploiting 
interpolation for approximation of element densities from 
the known densities at some particular points. From a 
rectangular design domain being meshed into n elements 
as shown in figure 3, let rj

0 be the position vectors of m 
sampling points (plus sign) and rk

v be the position vectors 
of the centre points of the n elements (‘o’ sign). With the 
idea of interpolation with radial-basis functions, the 
densities at the centre points of the elements, ρ, can be 
approximated from the given densities at the sampling 
points, ρADD, by the relation: 
 
 ADDADD TρρCAρ == −1    (6) 
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 For more details, see [7] and [11]. The number of 
ADD design variables is usually lower than that of the 
element centre points [7]. Figure 4 and 5 demonstrate 
how the mapping of densities from the ADD domain to 
ones at the finite element centre points works. The plot of 
sampling points and element centre points are given in 
figure 4 while the mapping of densities at the sampling 
points to become the finite element densities is shown in 
figure 5. It is shown that the actual structural 
configuration (on the finite element domain) is controlled 
by the density values from the ADD design domain. Due 
to the less resolution on ADD domain, the checkerboard 
and one-node connected hinge patterns which appear on 
the ADD domain are automatically prevented when 
mapped to the actual topology on the finite element 
domain. The ADD can be thought of as the filter of 
topological design variables. 

 
Figure 3 Sampling points and element centre points 

 

 
Figure 4 Sampling points & element centre points, 

example 

 
Figure 5 mapping from ADD domain to finite element 

domain 
 
 The topology optimiser used in this paper is the 
optimality criteria method presented in [8]. The algorithm 
is based upon optimality conditions where the resulting 
design variables are expected be either their 
corresponding lower or upper bounds. The design process 
starts with an initial solution and it is then updated 
iteratively until reaching the optimum. The updating 
scheme can be written as [8] 
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 v is a Lagrange multiplier to be determined on each 
loop 
 l ∈ (0,1) is a moving limit 
 η is a numerical damping ratio set to prevent 
premature convergence 
and ρmin and ρmax are the lower and upper bounds of the 
topology design variables respectively. 
 When implementing the ADD technique, the lower 
and upper bounds cannot be the same as ones given in the 
problem (1) but they are computed as: 
 ρmin = T#ρ0     (8) 
 ρmax = T#1 
where T# denotes the pseudo-inverse of T.  
 Moreover, the gradient of a function f with respect 
to ρADD can be obtained from [7] 

 
 

ρρ
T ff T

ADD ∇=∇      (9) 

 
 The procedure of OCM with the use of ADD is 
similar to that using the element thicknesses (or densities) 
as topological design variables. The difference is that the 
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OCM with ADD variables does not need sensitivity 
filtering technique or any additional numerical scheme to 
deal with checkerboard and one-node connected hinge 
problems as in the classical approach. The evaluation of 
function derivative can be carried out by using (9). The 
termination criterion for the OCM algorithm is that when 
the change of element densities is sufficiently small. 
 
4. Numerical Experiment 
 Two compliance mechanism synthesis problems are 
set to verify the present approach. The first design 
problem is named OPT1 and the structural half-model is 
illustrated in figure 6. The input force is applied at the 
left-hand bottom corner and the desired (maximum) 
output displacement is at the right-hand bottom corner of 
the design domain as shown. The structure is made up of 
material with 200×109 N/m2 Young modulus and 0.3 
Poisson’s ratio. The aspect ratio of the design domain is 
L/H = 2. The plate is discretised to have 80×40 elements 
while the number of ADD variables or sampling points is 
75×36 equally distributed throughout the plate.   
 The half-model of the plate for the second synthesis 
problem, termed OPT2, is shown in figure 7. The plate is 
made up of the same material as used in OPT1. The 
aspect ratio is L/H = 2. The number of finite elements 
used for structural analysis is 3128 elements while the 
number of ADD design variables is 2994. The input force 
is applied in the horizontal direction while the required 
output displacement is in the vertical direction. 
 The 4-node membrane finite element formulation is 
employed for structural analysis. Each synthesis problem 
is solved by two design strategies that are the original 
approach OCM with sensitivity filtering technique and 
the OCM with the present ADD design variables. They 
are called OCM1 and OCM2 respectively. The 
predefined parameters for the OCMs are set as: rmin for 
OCM1 is 0.1H, p = 3, η = 1/3 and m = 0.2.  

 
Figure 6 Half-model of OPT1 

 
Figure 7 Half-model of OPT2 

 
5. Design Results 
 The optimum results of OPT1 obtained from using 
OCM1 with 70%, 60%, 50% and 40% of mass reduction 
are illustrated in figure 8, 9, 10 and 11 respectively. The 
optimum results of OPT1 obtained from using OCM2 
with 70%, 60%, 50% and 40% of mass reduction are 
shown in figure 12, 13, 14 and 15 respectively. Note that 
the figures show the plot of full topologies. All the 
resulting compliance mechanisms have quite similar 
assemblies but different configurations. In the case of 
using OCM2 with 70% mass reduction, the search 
procedure was terminated before reaching the optimum. 
Figure 16 shows the comparison of the optimum 
objective function values of the mechanisms. Note that, 
for simplicity in comparison and illustration, all the 
function values are normalised to be in the range of (0, 1). 
It is shown that OCM1 is superior to OCM2 for 40% and 
70% mass reduction cases while OCM2 has the edge for 
the mass reduction ratios of 50% and 60%. 

 
Figure 8 Optimum topology of OPT1 from OCM1 with 

70% mass reduction 
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Figure 9 Optimum topology of OPT1 from OCM1 with 

60% mass reduction 

 
Figure 10 Optimum topology of OPT1 from OCM1 with 

50% mass reduction 
 

 
Figure 11 Optimum topology of OPT1 from OCM1 with 

40% mass reduction 

 
Figure 12 Optimum topology of OPT1 from OCM2 with 

70% mass reduction 

 
Figure 13 Optimum topology of OPT1 from OCM2 with 

60% mass reduction 

 
Figure 14 Optimum topology of OPT1 from OCM2 with 

50% mass reduction 

 
Figure 15 Optimum topology of OPT1 from OCM2 with 

40% mass reduction 

 
Figure 16 Comparison of normalised optimum objective 

values: OPT1 
 

 The optimum topologies of OPT2 obtained from 
using OCM1 with mass reduction ratios of 70%, 60%, 
50% and 40% are displayed in figure 17, 18, 19 and 20 
respectively. The optimum mechanisms of OPT2 
obtained from using OCM2 with 70%, 60%, 50% and 
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40% mass reductions are displayed in figure 21, 22, 23 
and 24 respectively. For the case of using OCM2 with 
70% mass reduction, the search procedure was stuck at a 
local optimum as happened in OPT1 design case. Similar 
to OPT1, all the compliance mechanisms have similar 
assemblies but different topologies. The comparison of 
the optimum objective function values of the mechanisms 
are given in figure 25. It is shown, as obtained from 
OPT1, that OCM1 is superior to OCM2 for the mass 
reduction ratios of 40% and 70% while OCM2 is better 
with the use of 50% and 60% of mass reduction. 

 
Figure 17 Optimum topology of OPT2 from OCM1 with 

70% mass reduction 

 
Figure 18 Optimum topology of OPT2 from OCM1 with 

60% mass reduction 
 

 
Figure 19 Optimum topology of OPT2 from OCM1 with 

50% mass reduction 

 
Figure 20 Optimum topology of OPT2 from OCM1 with 

40% mass reduction 

 
Figure 21 Optimum topology of OPT2 from OCM2 with 

70% mass reduction 

 
Figure 22 Optimum topology of OPT2 from OCM2 with 

60% mass reduction 

 
Figure 23 Optimum topology of OPT2 from OCM2 with 

50% mass reduction 
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Figure 24 Optimum topology of OPT2 from OCM2 with 

40% mass reduction 

 
Figure 25 Comparison of normalised optimum objective 

values: OPT2 
 
6. Conclusions and Discussions 
 Compliance mechanisms can be synthesised by 
using topology optimisation. The application of the ADD 
technique to compliance mechanism synthesis is as 
powerful as the classical approach using sensitivity 
filtering technique. The use of ADD is advantageous if 
the mass reduction ratios are 50% and 60% whereas the 
filtering technique is superior with the mass reduction 
ratios of 40% and 70%. The lower mass reduction ratios 
lead to the lower objective values except for the case of 
using OCM2 with 40% mass reduction. The mechanisms 
can be refined by performing shape and sizing 
optimisation so that stress, fatigue and dynamic 
constraints are met. 
 
Acknowledgements 
 The authors are grateful for the support from the 
Thai Research Fund (TRF) 
 
References 
[1] T. Kunakote, and S. Bureerat, “Structural Topology 

Optimisation Using Evolutionary Algorithms,” 17th 
ME-NETT, Thailand, 2003 (in Thai). 

[2] M.P. Bensφe and O. Sigmund, Topology 
Optimization Theory, Method and Applications, 
Springer-Verlag, Berlin Heidelberg, 2003. 

[3] Z. Luo, L. Chen, J. Yang, Y. Zhang, and K. Abdel-
Malek, “Compliance Mechanism Design Using Multi-
Objective Topology Optimization Scheme of 
Continuum Structures,” Struct Multidisc Optim, Vol. 
30, 2005, pp 142 – 154. 

[4] G.K. Lau, H. Du, and M.K. Lim, “Techniques to 
Suppress Intermediate Density in Topology 
Optimization of Compliance Mechanisms,” 
Computational Mechanics, Vol. 27, 2001, pp. 426 – 
435. 

[5] S. Kota, J.Y. Joo, Z. Li, S.M. Rodgers, and J. 
Sniegowski, “Design of Compliance Mechanisms: 
Applications to MEMS,” Analog Integrated Circuits 
and Signal Processing, Vol. 27, 2001, pp. 7-15. 

[6] G.K. Lau, H. Du, and M.K. Lim, “Use of Function 
Specification as Objective Functions in Topological 
Optimization of Compliance Mechanism,” Computer 
Methods in Applied Mechanics and Engineering, Vol. 
190, 2001, pp. 4421-4433. 

[7] S. Bureerat, “Structural Compliance Minimisation 
Using Approximated Distribution of Material 
Density,” KKU-Engineering Conference, 2004, Khon 
Kaen University. 

[8] O. Simund, “A 99 Line Topology Optimization Code 
Written in MATLAB,” Struct. Multidisc. Optim, Vol. 
21, 2001, pp. 120 – 127. 

[9] A. Poulsen, “A simple Scheme to Prevent 
Checkerboard Patterns and One-Node Connected 
Hinges in Topology Optimization,” Struct. Multidisc. 
Optim, Vol. 24, 2002, pp. 396 – 399. 

[10] S. Bureerat and T. Kunakote, A Simple 
Checkerboard Suppression Technique for Topology 
Optimisation Using Simulated Annealing, 17th ME-
NETT, 2003, Thailand. 

[11] S. Bureerat and J. Limtragool, Structural compliance 
minimisation using evolutionary algorithms with 
surface spline interpolation, in: 18th ME-NETT Conf., 
Khon Kaen, Thailand, 2004, pp. 319 - 324. 

 
 
 
 

CST010


