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Abstract 
Over the past few decades, instrumented sharp 
indentation has extensively been utilized as a tool to 
extract mechanical properties of indented materials.  The 
main advantages are the ease of specimen preparation, the 
ability to probe for localized properties and the non-
destructive nature.  Nonetheless, the direct indentation 
response requires further interpretation in order to arrive 
at mechanical properties.  Simulation tool based on finite 
element method was adapted to construct a set of 
algorithms that allow for the prediction of indentation 
responses from the given elastic-plastic properties.  
Dimensional analysis was further applied in quest of 
another set of algorithms that allow for the extraction of 
elastic-plastic properties from the given indentation 
responses.  Application and limitation of such algorithms 
are discussed.     
Keywords:  Instrumented indentation, Mechanical 
properties extraction, Finite element method, 
Dimensional analysis 
 
1. Introduction 
 Instrumented sharp indentation has been a focus of 
intensive research and development over the past few 
decades [1-9, among many others] due to its novel 
capability to probe for localized mechanical properties of 
small volume structure (e.g. MEMS, electronic 
interconnects, thin film and nanocrystalline materials) 
without much complication in sample preparation.  
Advances in experimental instrumentation have enabled 
an accurate measurement of indentation load (P) and 
depth (h) as small as µN and nm, respectively.  Simply 
saying, the indentation apparatus can be considered as an 
advanced version of typical hardness tester, where load 
and depth can be continuously monitored.   
 Figure 1 shows a schematic illustration of typical 
indentation response (P-h curve) of an elastic-plastic 
solid.  As the sharp indenter advances into the material, 
the loading response follows Kick’s law:  
 

P = Ch2    (1) 
 
where P is the indentation load, C is the loading 
curvature, and h is the indentation depth.  Upon 
unloading from a maximum load (Pm)/depth (hm), the 
indented solid experiences elastic recovery, which is 
often used to correlate with elastic property via an initial 

unloading slope 
m

d
d h

P
h

.  After complete unloading (P = 

0), residual plastic deformation is remained in the solid at 
the indentation depth of hr.  The area underneath the 
loading curve is termed total work done by the indenter 
(Wt), which comprises of elastic recovery work (We) 
underneath the unloading portion and plastic permanent 
work (Wp) enclosed by the loading and unloading curves 

via Wt = We + Wp.  Furthermore,  or p r

t m

W h
W h

 reflects a 

fraction of permanent deformation done by indenter in 
the solid.  Thus, the indentation response is often 
characterized by these three parameters: loading 
curvature C, initial unloading slope S and plastic work 

ratio p

t

W
W

(or residual depth ratio r

m

h
h

).   
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Figure 1.  Schematic illustration of a typical P–h response 
of an elastic-plastic material to instrumented sharp 
indentation. 
 
 The main obstacle for making this indentation 
technique viable like any other mechanical testing 
methods (e.g. tensile test) is the robust algorithm to 
interpret indentation response, a load-vs-depth data.  
Such algorithm requires comprehensive understanding of 
the contact mechanics to analyze complicated stress state 
and deformation mechanism as a result of severe 
plasticity caused by sharp indenter tip penetrating into 
indented materials.   
 Early attempt to extract mechanical property from 
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indentation data has dated back to the work of Tabor [1], 
where he has correlated hardness with the plastic flow of 
indented solid using the Vickers (four-sided pyramid) tip.  
His approximated relation of hardness being three times 
8% flow stress, H ≈ 3σ0.08, is still used nowadays as a 
first-hand estimate from hardness result.  Not until the 
work by Oliver and Pharr [3], who has further develop 
Doerner and Nix’s result [4], the algorithms to extract 
elastic modulus (E) and hardness (H) from an initial 
unloading slope and the contact area have become readily 
available and routine to perform.  However, such 
algorithms suffer an inaccurate prediction when there is a 
pile-up/sink-in of material flow against the face of the 
indenter tip.  Moreover, the extraction of plastic 
properties (e.g. yield strength σy and work hardening 
exponent n) from indentation data is not done as 
routinely.  Hence, the quest for a more accurate algorithm 
to extract elastic property and also some plastic properties 
is needed.  The present study aims to establish such 
algorithm from the aforementioned indentation 

characteristics (C, S and p

t

W
W

) by recourse to parametric 

finite element method and dimensional analysis [6]. 
 
2. Computational Methods 
 Indentation was simulated using general purpose 
finite element package ABAQUS [10].  Figure 2(a) 
shows an axisymmetric two-dimensional model setup, 
where a slant line representing a rigid conical indenter of 
an apex angle θ is placed on a block of elastic-plastic 
solid.  The contact between rigid indenter and indented 
solid was assumed to be frictionless.  As the severe 
plastic deformation is inevitable in the indentation 
process, non-linear geometry option in ABAQUS was 
used to emphasize the large deformation analysis.  The 
axisymmetric model has been shown [6, 9] to give similar 
indentation response to the full three-dimensional model 
on the condition that the apex angle θ yields the same 
projected contact area as that of the actual tip geometry.  
For a commercially available Berkovich tip (three-sided 
pyramid) equppied in most indenter apparatus, the 
corresponding apex angle is 70.3° [6].  Figure 2b shows a 
detail mesh design of the region directly beneath the 
indenter tip.  The semi-infinite block of the indented solid 
was modeled using 8,100 four-noded, bilinear 
axisymmetric quadrilateral elements, where a fine mesh 
near the contact region with gradually coarser mesh 
further away was carefully designed to ensure numerical 
accuracy.  At the maximum load (Pm), at least 16 
elements were in contact with the rigid indenter for each 
simulation performed here to ensure contact mechanic 
stability.  The mesh designed was well-tested for 
numerical convergence and insensitivity to far-field 
boundary conditions.  Details of the model setup were 
discussed elsewhere [6]. 
 The constitutive relation of indented solid assumed 
linear elasticity (σ = Eε) and von Mises plasticity with 
power-law hardening, as shown in Fig. 3.  For continuity 
at the yield point, the following relation is used to relate 

true stress and true strain in the plastic region, and also an 
input into FEM computation. 
 

y p
y

1σ σ ε
σ

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠

n
E   (2) 

where σ is true stress, σy is yield strength, E is elastic 
modulus, εp is plastic true strain and n is strain hardening 
exponent. 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. (a) Mesh design for axisymmetric finite element 
calculations with (b) a zoom in of the region in contact 
with the indenter tip. 
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Figure 3. The power law elasto-plastic stress-strain 
behavior used in the current study. 
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 A comprehensive parametric study, using various 76 
combinations (see Table 1) of mechanical properties 
typically found in common engineering metals, was 
conducted.  Each FEM P-h curve was obtained by 
monitoring the load felt by an indenter tip as it penetrated 
into the solid underneath in a displacement control 
manner.  The FEM P-h curve also showed good 
agreement with experimental P-h curve performed in [6].  
Dimensional analysis detailed elsewhere [6] was used to 
relate two parameter spaces: 76 sets of elastic-plastic 
properties (E, σy, n) as an input vs. 76 sets of P-h 

characteristics (C, 
m

d
d h

P
h

and p

t

W
W

) as a output.  It is 

expected that there are many ways to establish such the 
relations, where P-h characteristics can be predicted from 
a given set of elastic-plastic properties—referred as 
forward analysis hereafter.  On the other hand, the reverse 
analysis, which allows for an extraction of elastic-plastic 
properties from a given indentation response, must be 
considered simultaneously to achieve the more useful and 
significant results.  Thus, only the most robust and 
accurate routes are presented here.   
         
Table 1. Elasto-plastic parameters used in the present 
study.  For each one of the 19 cases listed below, strain 
hardening exponent n is varied from 0, 0.1, 0.3 to 0.5, 
resulting a total of 76 different cases 
 

E (GPa) σy (MPa) σy/E 
10 30 0.003 
10 100 0.01 
10 300 0.03 
50 200 0.004 
50 600 0.012 
50 1000 0.02 
50 2000 0.04 
90 500 0.005556 
90 1500 0.016667 
90 3000 0.033333 

130 1000 0.007692 
130 2000 0.015385 
130 3000 0.023077 
170 300 0.001765 
170 1500 0.008824 
170 3000 0.017647 
210 300 0.001429 
210 1800 0.008571 
210 3000 0.014286 

 
3. Results 
 In order to reflect non-ideally rigid tip used in 
experimental indentation, the elastic effect of indenter tip 
is compensated by using the reduced Young’s modulus 
E*:  

i

122
*

i

11 νν
−

⎡ ⎤−−
= +⎢ ⎥

⎢ ⎥⎣ ⎦
E

E E
         (3) 

 
where Ei is Young’d modulus of the indenter and νi is its 
Poisson’s ratio.  The major results of the dimensional 
analysis are illustrated here.  First, the loading curvature 
from eq. (1) can be written as: 
 

* *

r 1 12
r r r

=  ,     ,  σ
σ σ σ

⎛ ⎞ ⎛ ⎞
= Π → = Π⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

P E C EC n n
h

 (4) 

 
where σr is representative stress at εp = εr in eq. (2).  By 
varying the value of representative strain εr for all 76 
cases, Fig. 4 clearly shows that all points collapse into a 
‘single’ curve when εr = 0.033 is used (see Appendix for 
explicit form of the equation).  This significant finding 
suggests that there is a unique value of εr that allows eq. 
(4) to be n-independent.  In other words, for any given P-
h curve, if E* is known, only the experimentally 
measurable C is required to predict the flow stress at 
3.3% plastic strain, without knowing the hardening 
behavior of the material.  This Π1 function alone has 
enabled the extraction of one plastic property from the 
indentation response. 
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Figure 4. Dimensionless function 1Π  constructed using 
three different values of εr (i.e., εp = 0.01, 0.033 and 0.29) 
and the corresponding σr.  For εr < 0.033, 1Π  increases 

with increasing n; for εr > 0.033, 1Π  decreases with 
increasing n.  A representative plastic strain εr = 0.033 
can be identified as a strain level which allows for the 
construction of 1Π  to be independent of strain hardening 
exponent n. 
 
 Apart from the 1Π  function, other dimensionless 
functions were constructed as follows: 
 

m

*
u

2 *
r m

1,  
σ

⎛ ⎞
Π =⎜ ⎟⎜ ⎟

⎝ ⎠ h

dPE n
dhE h

  (5) 

r r
3 *

m
,  

σ⎛ ⎞Π =⎜ ⎟
⎝ ⎠

h
n

hE
    (6) 

aver
4 *

m

⎛ ⎞
Π =⎜ ⎟

⎝ ⎠

ph
h E

    (7) 

 
where pave is average contact pressure or approximately 
the hardness.  Explicit functional forms of each 
dimensionless functions can be found in Appendix.  It is 
often found in experimental P-h curve that a single value 
of residual depth hr is extremely sensitive to the 

experimental error.  Thus, the plastic work ratio p

t

W
W

 is 

instead used to reduce the sensitivity and dependence 
upon a single point of complete unloading.  Another 
dimensionless function was constructed as follows: 
 

pr
5

m t

⎛ ⎞
Π =⎜ ⎟

⎝ ⎠

Wh
h W

    (8) 

 
Following similar approach [3] to extract elastic modulus, 
another dimensionless function was constructed, with an 
improvement to account for pile-up/sink-in via a constant 
c*. 

m

*u
6 *

m

1
Π = =

h

dP
c

dhE A
  (9) 

 
where Am is contact area at maximum depth and c* is tip-
dependent correction factor (= 1.1957, 1.2370 and 1.2105 
for conical, Berkovich and Vickers tip, respectively.  
 
 Using eq. (2) -(9) to relate the parameter space of 
elastic-plastic properties in Table 1 to that of FEM P-h 
curves, the most robust pathway for forward and reverse 
analyses were constructed as in Figs. 5 and 6, 
respectively.  
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Figure 5. Forward analysis 
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Figure 6. Reverse analysis 
 
 To assess intrinsic robustness of both forward and 
reverse algorithms without any uncontrolled experimental 
artifact, the sensitivity analysis was performed via FEM 
parametric study of small perturbation to the algorithm 
input.  First consider forward algorithm, the perturbation 
of ±1, 2, 3, 4 and 5% deviation in any one input 
parameter (E*, σy or n) of the 76 cases were analyzed 
with the forward algorithms.  Over 2,200 cases were 
calculated, and the results were compared to the reference 
76 cases.  The results showed the maximum error of ±6% 

in the predicted results (C, 
m

d
d h

P
h

and p

t

W
W

).  This small 

error was expected since the dimensionless functions, 
listed in an Appendix, were derived in the forward sense.  
The real sensitivity was then investigated in the reverse 
analysis, where any miniature error in numerical analysis 
may eventually build up in the final result.  For reverse 
algorithm, the perturbation of ±1, 2, 3 and 4% deviation 

in any one input parameter (C, 
m

d
d h

P
h

and p

t

W
W

) of the 76 

FEM P-h curves were calculated.  Over 1,800 cases were 
calculated, and the results were compared to the reference 
76 cases.  Here, the general conclusion on the sensitivity 
cannot be drawn due to the largely different behaviors.  
Hence, statistical analysis was conducted to show the 
average trend with 99% confidence interval of the 
scattering, as shown in Fig. 7(a) - 7(d).   
 It is evident that E* displays weak sensitivity to C 

and 
m

d
d h

P
h

, and moderate sensitivity to p

t

W
W

. The σr 

displays weak sensitivity to C and 
m

d
d h

P
h

, and moderate 

sensitivity to p

t

W
W

.  The σy displays moderate to strong 

sensitivity to all three parameters.  The pave displays weak 

sensitivity to C and 
m

d
d h

P
h

, and strong sensitivity to p

t

W
W

.  

The strong sensitivity of σy suggests that a need to take 
the averaged value from a number of indentation tests in 
order to reduce the error as the data scatter is random in 
nature 
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Figure 7. Sensitivity charts for reverse analysis showing 
the average variations in (a) E*, (b) σ0.033, (c) σy and (d) 
pave due to ±1, 2, 3 and 4% perturbation in C (solid line), 

m

d
d h

P
h

 (dotted line) and p

t

W
W

 (dash-dotted line), with the 

error bar indicating 99% confidence interval.  
 
4. Conclusion 
 The present study aims to apprehend the essence of 
mechanics involved in the indentation process by 
recourse to large deformation parametric finite element 
studies and dimensional analysis.  The key results are as 
follows. 
 
1. Using dimensional analysis, a set of new universal, 

dimensionless functions were constructed to 
characterize instrumented sharp indentation.  From 
these functions and elastic-plastic finite element 
computations, solutions were formulated to relate 
indentation data to elastic-plastic properties.  

2. For sharp indentation (Berkovich tip) of power law 
hardening pure metals and alloys, a representative 
strain εr was identified at 3.3%, which allows for the 
relationship among C, E* and σ0.033, without the 
knowledge of material’s work hardening n.  

3. Forward and reverse analysis algorithms were 
established based on the identified dimensionless 
functions.  These algorithms allow for the calculation 
of the indentation response for a given set of 
properties, and also for extraction of some elastic-
plastic properties from a given set of indentation 
data. 

4. Comprehensive sensitivity analyses were carried out 
for both forward and reverse algorithms.  Forward 
algorithm was found to be accurate and robust; a 
± 5% error in any input parameter results in less 

than ± 6% in the predicted values of C, 
m

d
d h

P
h

and 

p

t

W
W

.  On the other hand, reverse algorithm suffered 

greater sensitivity; E*, σ0.033 and pave displayed weak 

sensitivity to variations in C and 
m

d
d h

P
h

but moderate 

to strong sensitivity to variations in p

t

W
W

 while σy 

displayed moderate to strong sensitivity to variations 

in all three parameters (C, 
m

d
d h

P
h

and p

t

W
W

).   

5. Although, plastic properties of materials extracted 
from instrumented indentation are very sensitive to 
even small variation in the P–h responses, the 
present computational study provides a mean to 
determine these plastic properties, which may not be 
easily obtainable by other means in small volume 
structures, and further provides an indication of the 
level of the sensitivity to experimental indentation 
data. 
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Appendix 
 In this appendix, six of the dimensionless functions, 
i.e. Π1, Π2 , 3Π , Π4 , Π5  and 6Π , are listed explicitly. 
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