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Abstract 
The present paper is aimed to test and assess the 
capability of intermittency transport equations which are 
used to model the flow transition. Two popular models of 
the intermittency transport equations developed by two 
research groups are considered. The first model proposed 
by Suzen and Huang [1] is obtained from combining the 
best features of the Cho and Chung [2] model and the 
Steelant and Dick [3] model, and the second one 
proposed by Menter et al [4] is revealed in the form of a 
generalized intermittency transport equation. The 
frameworks of both models play an important role in 
modern CFD codes and are incorporated into the 
transition computation features of some well-known CFD 
commercial softwares such as CFX-v-1.0. In this paper, 
both transport equations are integrated into the SST k-ω 
turbulence model of Menter [5] and employed to predict 
the flat plate boundary layer flow with zero pressure 
gradient and different freestream turbulence intensities: 
T3AM, T3A and T3B. Detailed comparisons of the 
computational results with the experimental data of 
Coupland (1993) and with the computational results of 
the low-Reynolds number k-ε of Launder and Sharma [6] 
and the SST k-ω model of Menter [5] are presented. 
Keywords: Intermittency, Transition, Boundary layer, 
Freestream turbulence intensity. 
and comparing with the results of conventional 
turbulence models, the low-Reynolds number k-ε of 
Launder and Sharma (1974) and the SST k-ω model of 
Menter [12] 
Nomenclature 
f generalized intermittency factor 
FSTI free stream turbulence intensity (%), u′/Uin

H shape factor, δ*/θ 
k turbulence kinetic energy 
Kt flow acceleration parameter, (ν/U2)(dU/ds) 
Reθ momentum thickness Reynolds number, ρθU∞/μ 
Reθt transition onset momentum thickness Reynolds  

number, ρθtU∞/μ 
Reθc critical momentum thickness Reynolds number 
n spot generation rate 
s streamwise coordinate 
S strain rate magnitude, (2SijSij)0.5

Sij voricity tensor, 0.5(∂ui/∂xj+∂uj/∂xi) 

Tu turbulence intensity (%), u′/U 
U local velocity magnitude 
yn distance normal to the nearest wall 
γ intermittency factor 
δ* displacement thickness 
θ momentum thickness 
μ molecular viscosity 
μt turbulent eddy viscosity 
ρ density 
σ spot propagation parameter 
ω specific turbulence dissipation rate 
Ω vorticity magnitude, (2ΩijΩij)0.5 

Ωij voricity tensor, 0.5(∂ui/∂xj-∂uj/∂xi) 
 
subscripts 
in inlet referent 
t onset of transition 
∞ local freestream 
 
1. Introduction 
 Flow transition plays an important role in the design 
and performance of turbomachinery applications and 
aerospace devices where the wall-shear-stress or wall-
heat-transfer or both is of interest. Majority of boundary 
layer flows in turbomachines and airfoils involve flow 
transition under the effects of many factors, such as 
freestream turbulence, pressure gradient and separation, 
Reynolds number, Mach number, turbulent length scale, 
wall roughness, streamline curvature, heat transfer, etc. 
Prediction of this flow type is an important element in 
analysis and performance evaluation and ultimately in the 
design of more efficient turbomachines and aerospace 
vehicles [7]. Especially, for example, in low pressure 
turbine applications, the flow in the cascade passages can 
result in the boundary layer of the blade being laminar or 
transitional over 50-70% of the blade surface. In such 
circumstances, the transition process can have major 
operational consequences. It has been known that early 
transition may prevent separation (stall) of the suction-
side boundary layer and consequently lead to a significant 
reduction in total-pressure loss [8]. As a result, the 
number of blades and stages may be reduced within 
turbomachinery to save cost. Furthermore, in case of 
aerospace devices, the transition process can also have a 
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strong influence on the separation behavior of boundary 
layers leading to a large effect on the performance of 
airfoils and bluff bodies. For example, at low Reynolds 
number with low freestream turbulence, the boundary 
layers on the airfoil surface have a tendency to remain 
laminar and hence the flow may separate before it 
become turbulent. This may cause a drop in efficiency 
and result in an increase of fuel consumption. For all 
these reasons, the performance, weight and costs 
associated with turbomachines and many aerospace 
devices can be affected by transition and the prediction of 
its behavior is even more important for reasons of design 
efficiency [9]. 
 At present, there are mainly three concepts used to 
model transition in industry. The first approach is based 
on the stability theory. The successful technique is the so-
called eN method. It is based on the local linear stability 
theory and the parallel flow assumption in order to 
calculate the growth of the disturbance amplitude from 
the boundary layer neutral point to the transition location. 
This method is not compatible with current CFD methods 
because typical industrial Navier-Stokes solutions are not 
accurate enough to evaluate the stability equation. In 
addition, since it is based on linear stability theory, it 
cannot predict transition due to non-linear effects such as 
high freestream turbulence or surface roughness. 
Therefore, this method is currently used for the case of 
natural transitions [7][9]. 
 The second approach is the use of conventional 
turbulence model. One way is to switch on the turbulence 
model or eddy viscosity at an experimentally 
predetermined transition location. This method is ad hoc 
and ignores the transition physics and the importance of 
the transition zone completely. Especially for flows 
where the transitional region covers a large portion of the 
flow field, as observed in many low-pressure turbine 
experiments, this practice can lead to severe errors in the 
solution. Another way is to use of the low-Reynolds 
number turbulence models. However, for the last ten 
years, the ability of the turbulence models in predicting 
the transitional flows have been investigated by many 
research groups, such as ERCOFTAC SIG (1991-1993),  
Westin and Henkes (1997), etc., by testing a large variety 
of turbulence models and comparing model performance 
in predicting the transition flow experiments. The 
conclusions indicated that most of two-equation 
turbulence models even the Launder and Sharma model, 
which was found as the best performer in the category of 
two-equation turbulence models, gave unsatisfactorily too 
early transition onset point and too short transition length.  
In addition, the prediction performance was found to 
depend on the inlet conditions at the leading edge. This 
outcome is not a surprise since most of the current 
turbulence models are not designed to predict flow 
transition, and, in order to correctly predict the flows 
affected by transition, some special treatments were 
needed in turbulence models [7][10]. 
  The third approach to predict transition, which is 
favored by the gas turbine industry, is to use the concept 
of intermittency to blend the flow from laminar to 

turbulent regions. The intermittency is the fraction of 
time the flow is turbulent during the transition phase, 
which is zero in the pre-transition region and becomes 
unity in the fully turbulence region, so that the start and 
development of transition can be imposed. The 
development of intermittency is quite general for steady 
flow on a flat plate and therefore the onset location and 
growth rate of transition can be correlated. Most 
correlations usually relate the freestream turbulence 
intensity, Tu, and the pressure gradient to the transition 
momentum thickness Reynolds number. A typical 
example is the correlation of Mayle [11], which is based 
on a large number of experimental observations. Another 
popular correlation is the Abu-Ghannam and Shaw [12] 
model, which additionally accounts for the influence of 
the pressure gradient.  
 In the early applications of the intermittency 
concept, the development of intermittency was described 
algebraically by the law of Dhawan and Narasimha [13] 
with the start and end of transition determined by 
correlations. However, this law is not appropriate for 
general applications, which are mostly under the effects 
of non-zero pressure gradients and high freestream levels, 
because it is valid only for the flow with zero pressure 
gradient and natural transition (freestream turbulence 
level < 1%). A more general intermittency is obtained by 
an intermittency transport equation. For example, the 
intermittency transport model of Steelant and Dick [3] is 
derived from the intermittency distribution of Dhawan 
and Narasimha [13] along the streamline direction. 
Another example based on the concept of local variables 
is formulated by Menter et al [4] in a form of a 
generalized intermittency variable. The concept of 
intermittency can be successfully incorporated into the 
turbulence model computation in many ways, such as in 
the framework of Steelant and Dick [3] the intermittency 
is incorporated into the two sets of the strongly coupled 
equations of conditionally averaged Navier-Stokes 
equations. This approach is too complex and not 
compatible with current CFD codes in which only one set 
of Navier-Stokes equations is involved. As a result, 
transitional flows are almost invariably modeled within a 
Reynolds Averaged Navier-Stokes (RANS) framework, 
and usually linked with the turbulence model by a 
modification of some terms in the turbulence model. 
Example of using the later approach is the use of 
intermittency obtained from the Dhawan and Narasimha 
correlation incorporated into the turbulence model 
introduced by Baek et al [10]. Another example is to use 
the transport equation for intermittency incorporated into 
the turbulence model introduced by Suzen and Huang [1], 
Menter et al [4], Pecnik et al [14], Lodefier et al [15], etc. 
 In the present study, the two different intermittency 
transport equations for modeling the transition are 
implemented. The first one was proposed by Suzen and 
Huang [1] (Suzen-Huang model) and the second one was 
developed by Menter et al [4] (Menter et al model). Both 
models are employed to predict the flat plate boundary 
layer with shape leading edge under zero pressure 
gradient and various freestream turbulence intensities. 
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The performance of both models is assessed by validating 
against the skin friction coefficient and shape factor of 
the Coupland (1993) experimental data and also 
comparing with the results of conventional turbulence 
models, the low-Reynolds number k-ε model of Launder 
and Sharma [6] (Launder-Sharma model) and the SST   
k-ω turbulence model of Menter [5] (Menter-SST model), 
to test their ability to simulate transition. Finally, the 
intermittency profiles of both models are observed and 
where in the boundary layer the intermittency of each 
model is activated on.     
 
2. Transport Models for the Intermittency 

In this study, two transition models with the 
transport equations of the intermittency factor are 
investigated, the first one is Suzen-Huang model and the 
second one is Menter et al model. Both models are 
integrated in conjunction with the Menter-SST model. 
Detailed information of both models are described as 
follows: 
2.1 Transport model of Suzen and Huang  

According to Suzen and Huang [1], the transport 
equation for the intermittency factor was developed based 
on the idea of combining the best features of the two 
existing transition models, the model of Cho and Chung  
[2] (Cho-Chung model) and the model of Steelant and 
Dick [3] (Steelant-Dick model). For near wall flows the 
Steelant-Dick model was chosen, which reproduces the 
streamwise variation of the intermittency factor in the 
transitional zone by using the relation of Dhawan and 
Narasimha [13]. For a realistic cross-stream variation of 
the intermittency factor the Cho-Chung model was taken, 
which was derived for free-shear flows. However, the 
Suzen-Huang model has been slightly adapted in some 
points afterward, and the new one in Suzen and Huang 
[16], is used here.  

A general intermittency equation can be written as 
j

j

u
D S

x γ γ

ρ γ∂
= +

∂
 (1) 

with the diffusion term Dγ  and the source term Sγ 

(1 )( )l t t
j j

D
x xγ γ γ

γγ γσ μ σ μ
⎡∂

= − +⎢
∂ ⎢⎣

⎤∂
⎥

∂ ⎥⎦
 (2) 

( )0 1 2(1 ) (1 )S F T F T Tγ γ ⎡= − − + − +⎣ 3T⎤⎦  (3) 
The blending function F is used to facilitate as a gradual 
switch from the Steelant-Dick model to the Cho-Chung 
model inside the transition region and is given as 

0.1 0.3

/tanh
200(1 )

kF ν
γ

⎡ ⎤Ω
= ⎢ −⎣ ⎦

⎥   (4) 

It should be noted that in some applications the vorticity 
magnitude, Ω, in the blending function F can be replaced 
by the strain rate magnitude, S. However, Suzen (private 
communication) pointed out that both could be employed, 
but the use of the strain rate magnitude may cause a non-
physical build-up of intermittency factor (and turbulence 
kinetic energy, k) in stagnation regions which is a well 
known problem of two equation turbulence models.  

The production term T0 comes from the Steelant- 

Dick model, aimed to reproduce the intermittency 
distribution of Dhawan and Narasimha. Two production 
terms T1 and T2 come from the Cho-Chung model, the 
term T1 mimics the production of turbulence kinetic 
energy, Pk, and the term T2 represents the production 
from the interaction between the mean velocity and the 
intermittency field. The term T3 is an additional diffusion- 
related production term which is kept active over the 
entire flow field and no blending is applied to this term.  
The production terms above are given as 

0 02 ( )k kT C u u f s f sρ ′= ⋅ ( )  (5) 
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The function f(s) was formulated to account for the 
distributed breakdown. This function depends on the 
streamline coordinate, which can simply be computed by 
solving the transport equation of the streamline 
coordinate, s, in equation (13), or s′, in equation (14). The 
form of this function and its derivation are given as 

4 3 2

3( ) as bs cs ds ef s
gs h

′ ′ ′ ′+ + + +
=

′ +
 (9) 

( )( ) ( ) ( )( )
' '

td s sdf s ds df s df sf s
ds ds ds ds ds '

′ −′ = = =  (10) 

The coefficients are 
0.550a n= ; 0.4906b = −  ; ; 0.50.204c n−=

0.0d = ; ; ;  1.50.04444e n−= 10h e=
50g =  (11) 

where /n n Uσ= . The spot production rate, n̂σ , where 
, is given by the correlation of Mayle [11] for 

zero pressure gradient and it has been modified by Suzen 
and Huang as: 

2ˆ /n n Uν= 3

Tu   
7 / 411ˆ 1.8 10nσ −
∞= ×  (12) 

The production term T0 in equation (5) requires the 
calculation of the streamwise distance. In order to 
eliminate the difficulties associated with calculating the 
streamwise distance, in case of complex geometries, 
Suzen and Huang developed the transport equation for 
the streamwise distance s as follows: 

j t
k k

j j s

u s

j

su u
x x x

ρ μ μ
ρ

σ

⎡ ⎤∂ ⎛ ⎞+∂ ∂
= + ⎢⎜ ⎟

∂ ∂ ⎢ ⎥⎝ ⎠⎣ ⎦
⎥

∂
   (13) 

and indeed the transition location, st, is actually taken as a 
constant value. Equation (13) can also be derived in the 
form of s', where s'=s-st, as follows:  

j t
k k

j j s

u s

j

su u
x x x

ρ μ μ
ρ

σ

⎡ ⎤′∂ ⎛ ⎞ ′+∂ ∂
= + ⎢⎜ ⎟

∂ ∂ ⎢ ⎥⎝ ⎠⎣ ⎦
⎥

∂
 (14) 

The model constants are 
0.1sσ = ; 1.0l tγ γσ σ= = ; C0 = 1.0; 

C1 = 1.6; C2 = 0.16; C3 = 0.15             (15) 

 

CST030



The transition onset location is determined by the 
correlation in terms of the freestream turbulence 
intensity, Tu, and the acceleration parameter, Kt, and the 
maximum absolute value of that parameter in the 
downstream deceleration region 

2 / 3 5Re (120 150 ) coth 4(0.3 10 )t tTu Kθ
− ⎡= + −⎣ ⎦⎤

t

 (16) 
In order to employ this intermittency model to 

successfully simulate the transition, Suzen and Hung 
suggested that the turbulence model selected to obtain a 
μt must produce fully turbulent feature before the 
transition location in order to allow the intermittency to 
have a full control of the transition behaviour. In their 
work the Menter-SST model satisfies this requirement. 
The intermittency is incorporated in computations simply 
by multiplying the eddy viscosity in the diffusive part of 
the mean flow equation, which is obtained from the 
turbulence model, by the intermittency factor, γ. The 
transition model interacts with the turbulence model via 
the diffusion part of the mean flow equation: 

tμ γμ=  (17) 
It must be noted that γ does not appear in the generation 
term of the turbulence kinetic energy equations. The 
computation steps are given as follows: (a) Set (guess) 
the onset of the transition position, st, (the first guess is 
set at the leading edge point); (b) Solve the mean flow 
equations: the momentum equations with a modified 
eddy viscosity, tμ , and the continuity equation (which is 
in the form of pressure correction equation); (c) Solve the 
turbulence transport models: the k-equation, the ω-
equation, and then compute the μt; (d) Compute the 
location of the transition onset, st, by searching for the 
point where Re Re tθ θ= ; (e) Solve the equation of the 
streamwise coordinate s (or s'); and (f) Solve the 
intermittency transport model. 

It should be noted that setting γ to remain between 
0.01 and 0.99 at the end of each iteration is necessary to 
avoid the singularities. The boundary conditions for γ  are 
a zero flux at walls and a fixed small value at the inlet (γ 
=0.01 is recommended and is used in this work), and the 
initial condition is set equal to the inlet value. The initial 
condition of s=0.0 is used all over the flow field, and the 
gradient of s is set to zero at all boundaries. 
2.2 Transport model of Menter et al. 

According to Menter et al [4], the transport equation 
for the intermittency factor is developed based on the idea 
of dimensionless parameters, which define profiles inside 
the laminar and turbulent portions of the boundary layer. 
The relative magnitude of these quantities inside the 
boundary layer depends on the development stage of the 
boundary layer and is therefore proportional to the 
momentum thickness used in the transition correlations. 
This information can trigger the transition process.  

An intermittency equation can be written as 

j t
f f

j j f

u f

j

fP E
x x x

ρ μ
μ

σ

⎡ ⎤⎛ ⎞∂ ∂
= − + ⎢ + ⎥⎜ ⎟⎜ ⎟∂ ∂

∂
∂⎢ ⎥⎝ ⎠⎣ ⎦

 (18) 

with the sources consist of production term, Pf , and 
destruction term,  Ef , defined as follows: 

1 1f f GP C SF fρ=  (19) 

2f f fE C P f=  (20) 
The function FG1 is zero upstream of the transition point 
and is activated at the prescribed Reθc, which is given by 
an experimental correlation as follows: 

1 1 3 2max[ (1 ) 1;0]G fF Cξ ξ= + −  (21) 
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2

1
1

2.07 Re
n

c

Sy

θ

ξ
ν

=  (24) 

For technical reasons, 1ξ is limited to remain between 0 
and 2, and the model constants are  

Cf1 = 0.5; Cf2 = 0.1; Cf3 = 5.0; 
1.0fσ =  (25) 

The transition model interacts with the turbulence model 
via the production term of the turbulence kinetic energy, 
Pk: 

k tP F P= k  (26) 
The transition (intermittency) function Ft is defined from 
the non-linear distribution level f as follows: 

6

6( 0.01)t
fF

f
=

1− +
  (27) 

with . The boundary conditions for f 
are a zero flux at walls and a fixed small value at the inlet 
(f=0.01 is used in this work) and the initial condition is 
set equal to its inlet value.  

max[2 5; 0]f f= −

The computation steps are summarized as follows: 
(a) Solve the mean flow equations: the momentum 
equations, and the continuity equation (which is in the 
form of pressure correction equation); (b) Specify the 
Reθc with the value corresponding to the requirement of 
each test case; (c) Solve the turbulence transport models: 
the k-equation with a modified production, , the ω-
equation, and then compute the μ

kP

t; and (d) Solve the 
generalized intermittency transport equation. 
 
3. Numerical Details 

Three widely examined test cases: T3AM, T3A and 
T3B (J. Coupland, Applied Science Lab., Rolls-Royce 
plc, Derby, England, United Kingdom, Dec. 1993), are 
considered in the present paper where transition is driven 
by the external freestream turbulence (bypass transition) 
rather than by the development of Tollmien-Schlichting 
(T-S) waves (natural transition). All cases designated are 
boundary-layer flows on a flat plate with a sharp leading 
edge under zero-pressure-gradient condition.  Details of 
grid configuration and boundary conditions are shown in 
Fig. 1. 

The computations were performed with an elliptic 
solver which solved the mean flow, turbulence model, 
and intermittency model using the second-order TVD-
upwind scheme based on Van Leer’s flux limiter (Van 
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Leer, 1979) and the finite volume discretization. In the 
computations, a range of grid densities was explored by 
performing a careful grid-dependent check, in which the 
grid spacing was both decreased by half, and a mesh of 
110 (streamwise) × 80 (expanding from wall to the 
freestream) was adopted for all test cases. In all cases, the 
near-wall nodes were located at y+ having values between 
0.08 and 0.3. Computations began ahead at x=15 cm 
upstream of the test plate leading edge. This was vital, 
because it enabled the uniform profiles of k and ω to be 
assigned. If one starts computations on the plate itself, the 
predicted transition point is strongly dependent on the 
assumptions made about the way k and ω vary across the 
boundary layer [17]. As a consequence, a considerably 
reduced streamwise internodal spacing was needed in the 
vicinity of the leading edge of the plate.  

 

 
Fig. 1 Grid configuration and boundary conditions 

 
In this work, incompressible flow is considered so 

that the fluid density and molecular viscosity are set to 
constant values of 1.2 kg/m3 and 1.8×10-5 kg/m⋅s 
respectively. The boundary conditions for BC1, BC2, 
BC3, and BC4 boundaries are inlet, outlet, no-slip wall 
and freestream boundary conditions respectively with the 
following specification:  

Freestream: Gradients of all variables with respect 
to the vertical axis (y) are set to zero. 

Wall: No-slip conditions are imposed. 
Outlet: Gradients of all variables with respect to the 

horizontal axis (x) are set to zero. 
Inlet: Uniform values of all variables are used.  
In all computations, it should be noted that only the 

zero pressure gradient condition is of interest in this work 
so that the normal zero gradient of pressure has to be 
applied for all boundaries. The initial streamwise mean 
velocity profile is the Blasius velocity profile 
(δ/x=5.0/Re1/2), and the inlet conditions are prescribed to 
match the experimental decay of the freestream 
turbulence intensity. In the pretransition region, the 
experimental measurements reveal that the streamwise 
fluctuation component is predominately larger than the 
normal and crossflow components as reported by Savill 
(1991) and Baek et al [10] 

2 2'u u= , 2 2' 0v v= = ,    2 0.04 'w = 2u  (28) 

and 2 2 22k u v w u= + + = 21.04 '  so that it is possible to 
assume 2k u≈ ' . From this approximation the inlet 
turbulence kinetic energy is obtained by fixing its value 
according to the inlet experimental freestream turbulence 

level, FSTI, and the inlet viscosity ratio, Rμ,, is specified 
in order to match the experimentally measured decay of 
the freestream turbulence intensity. Hence, the inlet 
conditions of the turbulence variables are calculated from 
the following relationships: 

t Rμμ μ= ;  ;  20.5( )ink FSTI U= ⋅ / tkω ρ μ=  (29) 
A summary of the inlet conditions for all test cases used 
in this paper is given in Table 1.  
 
Table 1 Summary of all test case inlet conditions. 

Case Uin (m/s) FSTI (%) Rμ Reθc
T3AM 19.8 0.98    3.0 810 
T3A   5.4 3.35    4.0 260 
T3B   9.4 6.14  38.5 160 

 
4. Results and Discussion 

Two transition models with different intermittency 
transport equations, the Suzen-Huang model and the 
Menter et al model, are used to predict the experimental 
test cases assembled by Coupland (1993): T3AM, T3A 
and T3B. These experimental data are specially selected 
to test the capability of transition models to predict the 
effect of freestream turbulence on the development of 
transition of a laminar boundary layer under zero pressure 
gradient condition. Comparisons are also made for all 
cases between these two transition models and the 
conventional turbulence models, that is, the Launder-
Sharma model, which has been known as the best model 
among all available two-equation models for analysis of 
transitional flow, and the Menter-SST model. The test 
cases are specified with the corresponding test conditions 
described in Table 1. With these specifications the inlet 
conditions of turbulence variables were obtained and the 
decay of freestream turbulence intensity is matched with 
the experimental data as shown in Fig. 2. 

BC4 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1.0E+04 1.0E+05 1.0E+06 1.0E+07Rex

FS
TI

Fig. 2 Comparison of measured freestream turbulence  
  intensity for test cases: T3AM (�), T3A (Δ),  
  T3B (◊) with the numerical results (solid lines)  
 
Fig. 3 displays the predicted and measured skin 

friction coefficients, the analytic laminar skin friction 
coefficient, cf=0.664/Re1/2, and the analytic turbulent skin 
friction coefficient, cf=0.027/Re1/7. The skin friction 
coefficient plays an important role in indicating where the 

 x 
   120 cm. 15 cm. 

 Leading edge    BC4 BC3 

 BC2 BC1 
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starting and ending points of transition are. The variation 
of the skin friction coefficient along the flat plate is 
usually displayed with respect to the Reynolds number, 
and the linear-scale plot is displayed in this work. The 
start and the end of transition occur at the points where 
skin friction coefficient profile reaches the minimum and 
maximum values respectively and the profile variation 
between two those points indicates the growth rate of 
transition and the length of transition (the more the rapid 
growth rate the shorter the transition length). In this 
result, to assess the ability of the models in predicting the 
onset of transition and the length of transition, the skin 
friction coefficient profile is therefore an appropriate 
indicator. As seen in Fig. 3, the Menter-SST model gives 
the immediate transition to turbulence at the leading edge 
of the flat plate showing almost no laminar zone for all 
three test cases. The Launder-Sharma model gives early 
onsets of transition and the transition to turbulence grows 
up too rapidly when compared to the experimental data, 
and hence a shorter transition length. The prediction of 
the Menter et al model gives the result nearly the same as 
the Launder-Sharma model in T3AM case, and delayed 
transition onsets with the under-predicted skin friction 
coefficients at the end of the transition region in both 
T3A and T3B cases. The Suzen- Huang model shows 
better agreement with the experimental data in T3A case 
and the too early onset of transition in T3AM case but in 
T3B case this model predicted the too delayed onset of 
transition and the slightly overshoot skin friction 
coefficient at the end of the transition region.  

The predicted shape factor variations are compared 
with the experimental data in Fig. 4. The shape factor is 
defined as the ratio of the displacement thickness to the 
momentum thickness in the boundary layer, and hence it 
describes the influence of the freestream turbulence 
eddies on transition. Moreover it indicates if the 
boundary layer is separated or has the tendency to 
separate. A large shape factor implies that the boundary 
layer separation is about to occur. It has been known that, 
from analysis, the shape factor is about 2.6 for the 
laminar boundary layer and about 1.4 for the turbulent 
boundary layer and varies between these two values for 
the transitional boundary layer. In Fig. 4, it must be noted 
that all presented models predict a laminar flow 
characteristic before the transition onset point and show a 
turbulent flow characteristic after the end of the transition 
region. Menter-SST model gives an immediate decay of 
shape factor at the leading edge of the flat plate for all 
three test cases. This implies that this model produces 
fully turbulent feature and cannot detect any effects of 
transition.  With the Launder-Sharma model, the 
predicted shape factor profile appears to match the 
experimental data better than that of the other presented 
models. This is a coincidence. These results merely 
reflect the fact that the k-ε model predicts an early flow 
transition [7] as can be seen in Fig. 3. For the Menter et al 
and Suzen-Huang models, the computed shape factor 
distribution are widely spread and also become the 
laminar value of 2.6 from the leading edge of the flat 
plate toward the transition onset. In T3AM case, all the 

presented models give unsatisfactory results, the 
predicted profiles drop down too early from the 
experimental data. For T3A case, the laminar shape 
factors of approximately 2.6 of both models and of 
experiment are completely ended at the stations of Rex= 
2.08×105, 1.64×105, and 1.35×105, respectively, and 
Rex=9.80×104, 1.04×105, and 5.91×104 in T3B case, 
respectively. The difference between the predicted results 
and experimental data, the prediction larger than the 
experimental data, implies that both models predict the 
delayed onset of transition. Moreover, the rapid decay of 
the shape factor profiles from laminar to turbulence 
regions leads to the shorter transition length.      
 Fig. 5 shows the intermittency profiles predicted by 
the Suzen-Huang model at various streamwise stations 
inside the transition zone. As can be seen, for T3A case, 
the profiles exhibit a peak between y/δ*=0.5 and y/δ*=1.5, 
then drop off toward zero near the edge of the boundary 
layer, around y/δ*=8.0. For T3B case, the profiles display 
the same characteristics as found in T3A case, but due to 
a higher freestream turbulence intensity, the results show 
that the peaks of the profiles are less pronounced for this 
case and the spread of the intermittency appears wider 
across the transition region. For T3AM case, it should be 
noted that this case has a lower freestream turbulence 
intensity than T3A and T3B. As a result, the profiles 
show more pronounced peaks and the spread of the 
intermittency is narrow in the transition zone. Fig. 6 
shows the generalized intermittency profiles predicted by 
the Menter et al model. It is clear that the profile 
characteristics are quite different from those of the 
Suzen-Huang model. The intermittency function of this 
model is designed to focus on the boundary layer edge by 
being unity through the transition region toward 
downstream. At any streamwise station inside the 
transition zone, the profiles start and grow up rapidly 
toward unity and therefore spread across the boundary 
layer and then decay rapidly toward zero afterward.  In all 
cases, the profiles exhibit a peak between y/δ*=1 and 
y/δ*=2, then drop off toward zero near the edge of the 
boundary layer, around y/δ*=5.5 for T3AM, y/δ*=5.5 for 
T3A, and y/δ*=10 for T3B. 

 
5. Conclusion 

Two transition models with the intermittency 
transport equation are implemented and their ability are 
assessed. The first one is the Suzen-Huang model 
interacts with the turbulence model via the diffusion part 
of the mean flow equations and the other one is the 
Menter et al model interacts with the turbulence model 
via the production term of the turbulence kinetic energy, 
Pk. Both models are used in conjunction with Menter-
SST model to predict the flat plate boundary-layer flow 
with zero pressure gradient and three different freestream 
turbulence intensities corresponding to the conditions of 
T3AM, T3A and T3B experiments by Coupland (1990). 
Performance of both models are assessed by validating 
the predicted skin friction coefficient and shape factor 
results with the experimental data and comparing them 
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with the results of the Launder-Sharma model and of the 
Menter-SST model.  

In case of the skin friction coefficient, the 
computational results show that the Menter-SST model 
produces turbulence at the leading edge of the flat plate 
without capturing any transition effect and the Launder-
Sharma model predicts early onsets of transition and a 
shorter transition length. The Suzen-Huang model 
predicts the experimental data well only in case of T3A. 
The Menter et al model predicts unsatisfactorily onsets of 
transition in all three test cases.  

In case of the shape factor, the computation results 
show that the Menter-SST model produces turbulence 
thoroughly and therefore neither laminar zone and nor 
separation appears. The Launder-Sharma model gives the 
fairly good prediction when compared with other 
presented models. Both the Suzen-Huang model and the 
Menter et al model predict unsatisfactorily onsets of 
transition in all three test cases.  
 The advantages/disadvantages of both models are 
summarized as follows: 
Menter et al model: 
 Advantages: (1) The interaction with the turbulence 
model is stable; (2) The transition location is obtained in 
a reasonable number of iteration; (3) The model is not 
activated in stagnation regions where the strain rate 
magnitude, S, is not zero; (4) The solution is independent 
of the initial condition. 
 Disadvantages: (1) The model cannot be activated 
by the turbulence effect in the freestream; (2) The 
constant Reθc must be known before computing. 
Suzen and Huang model: 
 Advantages: (1) The interaction with the turbulence 
model is stable; (2) The solution is independent of the 
initial condition. 
 Disadvantages: (1) The model cannot be activated 
by the turbulence effect in the freestream; (2) In general, 
especially for complex flows, the transport equation of 
streamwise coordinate has to be solved additionally.   
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Fig. 5 Intermittency factor profiles of Suzen and Huang  
          model for T3AM (top), T3A (middle) and T3B  
          (bottom) cases  
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