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Abstract
Steady laminar natural convection in an annulus

induced by heat generation within the inner solid cylinder
has been analyzed by finite element method on standard
personal computer.  Six-node triangular elements are
employed throughout the computational domain.
Coincident nodes on the solid-fluid interfaces are utilized
to impose the conditions of continuous temperature and
heat flux.  The annulus with aspect ratio of 0.8 is filled
with a Boussinesq fluid with Prandtl number of 0.7.  The
uniform heat generation rate of the inner solid cylinder is
varied to yield the modified Rayleigh number ranging
from 3.0×103 to 9.0×104.  The thermal conductivity ratio
of 0.1, 1.0, and 10.0 are examined to find the trends of
limiting cases.  The numerical results show that the
surface of the inner cylinder tends to be isothermal and
constant-heat-flux when the thermal conductivity ratio
approaches infinity and zero, respectively.

Keywords: finite element, natural convection, heat
generation, conjugate heat transfer, annulus.

1. Introduction
The phenomenon of natural convection in an

enclosure has been intensively researched for several
decades because it plays an important role in many
engineering applications such as solar energy collector,
nuclear reactor designs, cooling of electronic equipment,
and thermal storage systems.  The enclosures of various
shapes have been investigated numerically and
experimentally with simplified thermal boundary
conditions of constant temperature, constant heat flux,
and adiabatic walls [1-5].  But many problems require a
more realistic treatment of the thermal wall condition for
better designs.

In the recent two decades, many papers concerning
to the numerical modeling of conjugate (coupled
conduction and convection) heat transfer in enclosures
have been published.  Kaminski and Prakash [6]
considered the effects of conduction in one vertical wall
of natural convection in a square enclosure.  Lacroix and
Joyeux [7] and Dong and Li [8] investigated more
complicated problems by including heated cylinder and
conducting wall to their computational domains.  Liaqat
and Baytas [9] simulated the conjugate natural convection
in a square enclosure with volumetric sources.  These
literatures show the increasing of researches on conjugate

heat transfer, which reflecting the necessity of realistic
simulations for engineering applications.

Natural convection in an annulus between horizontal
concentric cylinders has been studied frequently after the
research of Kuehn and Goldstein [3] was published.
Various aspects of this phenomenon can be found in a
number of literatures such as Date [10], Kumar [11],
Chung et al. [12], and so on.  The condition of higher
uniform temperature on the surface of the inner cylinders
is preferred.  This condition means that the inner cylinder
must be heated, which may be induced by heat generation
process within it, but the uniformity of the temperature on
its surface cannot be guaranteed.

This paper presents the use of finite element method
in analyzing the natural convection in an annulus
occurring from the mentioned heating process.  The
conduction within the inner solid cylinder was coupled to
the convection within the annular gap and solved
simultaneously.  The crucial point of the conjugate heat
transfer problems is the conditions of continuous
temperature and heat flux at the solid-fluid interfaces.  In
present study, all nodes on the interface were doubled to
introduce the auxiliary equations into the system
equations to satisfy the conditions at the interface.  The
method of weighted-residuals was applied in deriving
finite element equations based on six-node triangular
elements to solve steady-state problems.  The
corresponding finite element computer program that can
be executed on standard personal computer was
developed.  Flows with modified Rayleigh number
ranging from 3.0×103 to 9.0×104 were simulated. At
each modified Rayleigh number, the thermal conductivity
ratio of 0.1, 1.0, and 10.0 were examined to pursue the
uniform temperature on the inner cylinder surface and
investigate the heat transfer characteristics of the flows.
Some results could be indirectly compared with the
numerical solutions of Kuehn and Goldstien [3] to verify
the developed finite element computer program.

2. Governing Equations
Following assumptions are made to simplify the

problems: there is no viscous dissipation, the fluid
properties are constant at reference temperature, the
Boussinesq approximation is taken into account for fluid
density variation due to buoyancy, and the radiation heat
exchange and thermal expansion effect are neglected.  If
the gravitational force acts in the vertical direction, the
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governing equations for two-dimensional steady laminar
incompressible flows of a Newtonian fluid can be written
in the following form [13,14]: -
Conservation of Mass:
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∂ ∂

(1)

Conservation of X-Momentum:
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Conservation of Y-Momentum:
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Conservation of Energy:
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where x and y are Cartesian coordinates, u and v are the
velocity component in x- and y-direction, Tf is the fluid
temperature, ρf is the fluid density, βf is the fluid thermal
expansion coefficient, cpf is the specific heat at constant
pressure of fluid, qf′′′ is the rate of volumetric heat
generation of fluid, Tref is the fluid reference temperature,
and g is the gravitational acceleration.

The fluid reference temperature for the buoyant
term in y-momentum equation is the average temperature
of fluid [15].  The arithmetic mean of the maximum and
minimum fluid temperature is used as the fluid reference
temperature throughout this paper because the fluid
temperature variations are small.

The stress components are given by
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where p is the fluid pressure and µ is the fluid dynamic
viscosity.

From Fourier’s law of conduction for isotropic
materials, heat flux in x- and y-direction are

,f f
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where kf is the fluid thermal conductivity.
For a conducting solid at steady state, the energy

equation is
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qqq
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where qs′′′ is the rate of heat generation per unit volume
of solid.

Heat flux in x- and y-direction are
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where ks is the solid thermal conductivity.
For steady laminar natural convection in enclosures,

temperature must be specified at least one point on the
no-slip walls.  On the other portions of the wall,
temperatures or heat fluxes are described.  When the
conjugate effects are considered, the temperatures and
heat fluxes must be continuous at the solid-fluid
interfaces and the remaining boundary of the conducting
solid may be described by temperatures or heat fluxes.

3. Finite Element Formulation
Yamada et al. [16] suggested the use of different

order interpolation functions to avoid the over-
constrained system of algebraic equations.  So, the six-
node triangular elements are utilized in deriving finite
element equations because they offer the choice for
different order interpolation functions [17].  The
interpolation functions of all unknowns in six-node
triangular elements are: -
Second Order Interpolation Functions for Velocity
Components and Temperature:

2
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First Order Interpolation Functions for Pressure:

1 1 2 2 3 3H L H L H L= = = (12)

where 1 2 3, ,L L L  are shape functions of triangle.
The method of weighted-residuals was applied by

weighting the conservation of momentum and energy
with second order interpolation functions and the
conservation of mass with first order interpolation
functions.  This procedure yields 21 equations for
determining 21 unknowns on each element.  After
applying integration by-parts and Gauss theorem, the
finite element equations are: -
For fluid elements,
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where Ωe is the area of fluid element, Γe is the boundary
of fluid element, 1, 2,3λ = , and 1, 2,...,6α = .

The components of surface forces are defined by

x x yxP l mσ τ= + (17)

y xy yP l mτ σ= + (18)
and the rate of heat transfer in the outward normal
direction of fluid element is defined by

( )n f x yq q l q m= + (19)
where l and m are direction cosines of the outward
normal vector of the fluid element boundary.
For solid elements,
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where Ωe is the area of solid element, Γe is the boundary
of solid element, and 1, 2,...,6α = .

The rate of heat transfer in the outward normal
direction of solid element is defined by

( )n s x yq q l q m= + (21)
where l and m are direction cosines of the outward
normal vector of the solid element boundary.

After substituting the constitutive equations of stress
components and heat fluxes into equations (13) to (16)
and equation (20), the finite element equations become

{ } { }f f fe e e
K Qφ⎡ ⎤ =⎣ ⎦ (22)

{ } { }s s se ee
K Qφ⎡ ⎤ =⎣ ⎦ (23)

where [Kf]e and [Ks]e are element property matrices
(stiffness matrices) of fluid and solid media, {φf}e is the
vector of fluid element unknowns (velocity components,
temperature, and pressure), and {φs}e is the vector of
solid element unknowns (temperature).

{Qf}e and {Qs}e are the vectors of physical boundary
conditions (load vectors) on the fluid elements boundary
and solid elements boundary, respectively.

After assembling all elements together, the system
equations are

[ ] { } { }sys syssys
K Qφ = (24)

where [K]sys is system property matrix, {φ}sys is the
system vector of unknowns, and {Q}sys is the system
vector of physical boundary conditions on the domain
boundary.

All of the boundary conditions including the special
conditions at the solid-fluid interface must be imposed
before solving the system equations.  The continuity of
temperature and heat flux at solid-fluid interface are
satisfied by modifying two energy equations at the
coincident nodes (one equation for solid media and the
another one for fluid media) as follow.

0f sT T− = (25)

( ) ( ) 0n f n sq q+ = (26)
The latter equation is accomplished by summing the

left-hand side of the energy equations of the coincident
nodes.

4. Computational Procedures
Because the system equations are nonlinear,

Newton-Raphson iterative method is applied to change
them into a system of linear equations of unknown
increments.

[ ] { } { }sys syssys
K Rφ φ∂ ∂ ∆ = (27)

where {∆φ}sys is the vector of unknown increments and
{R}sys is the vector of residuals.

The Newton-Raphson iterative process is terminated
when 1-norm [18] relative error (ε) is less than 0.1%.
The preconditioning conjugate gradient method [19] is
applied in solving equation (27) with the stopping criteria
of 10-6 in 2-norm [18] relative residuals.
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The final form of the system equations of unknown
increments is used in the development of the finite
element computer program that can be executed on
standard personal computers.  The developed computer
program is verified by examining the trends of limiting
cases with the results of Kuehn and Goldstien [3].  Some
numerical results that cannot be compared are generated
for investigating other information of this phenomenon.

5. Numerical Results and Discussion

Figure 1 shows the physical situation and finite
element mesh to be analyzed.  The outer cylinder with
diameter do is cylindrical shell with negligible thickness
and is fixed at low temperature.  The inner solid cylinder
with diameter di generates volumetric heat at the rate of
qs′′′ uniformly over its cross section and has constant
properties.  These two cylinders form an annulus with a
width of w.  This annular gap is filled with a Newtonian
fluid with constant properties that cannot supply any
volumetric heat generation (qf′′′=0).

Only a half of the physical domain is considered
because many former researches indicate the symmetry of
the solutions of this problem.  The finite element model
consists of 8386 nodes of velocities and temperature,
2167 nodes of pressure, and 4054 elements is employed
in all simulations of this paper.

The influenced parameters of the natural convection
in an annulus with constant temperature surfaces are
Prandtl number (Pr), Rayleigh number (Ra), and the ratio
of annular gap width to the inner cylinder diameter (w/di).
Prandtl number and Rayleigh number are defined by
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Figure 1.  Physical situation and finite element model.
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where ν is the fluid kinematic viscosity, κf is the fluid
thermal diffusivity, and lf is the characteristic length of
fluid domain.  For this geometry, the annular gap width
(w) acts as the characteristic length.

When the natural convection is induced by heat
generation of the inner solid cylinder, the problem is said
to be conjugate.  A new influenced parameter, the thermal
conductivity ratio must be introduced.

s fK k k= (31)
Rayleigh number must be modified by the equation

3 2
* f f s s

f f

g l q lRa
k

β
νκ

′′′
= ⋅ (32)

where ls is the characteristic length of solid domain.
Now, the diameter of the inner solid cylinder (di) acts as
the characteristic length of solid domain.

The new factor in equation (32) indicates the
strength of volumetric heat generation of the inner
cylinder.  It has the dimension of temperature and is the
cause of fluid motion like the factor (Tmax-Tmin) in
equation (30).  The fluid thermal conductivity is selected
instead that of solid because the natural convection
characterized by this parameter occur in the fluid media.

In present study, the fluid filled in the annulus has
Prandtl number of 0.7 (air) and the aspect ratio, the ratio
of annular gap width to the inner cylinder diameter, is 0.8
for all cases.  The conductivity ratio of 0.1, 1.0, and 10.0

are examined to find the trends of the limiting cases when
it approaches zero and infinity at the modified Rayleigh
number of 3.0×103, 6.0×103, 1.0×104, 2.0×104, 3.6×104,
and 9.0×104.  All of numerical solutions presented here
are obtained by executing the finite element computer
program on Pentium III 866 MHz with 256-MB memory
on board.

The velocity distributions are not shown here
because the most interested point of this paper is the
thermal effect of heat generating process from the inner
solid cylinder on the temperature distributions and heat
transfer performances.

The non-dimensional temperature in all figures is
defined based on the difference of maximum and
minimum temperatures overall the domain by

min

max min

T T
T T

−
Θ =

−
(33)

(a) K=0.1

(b) K=1.0
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(c) K=10.0

Figure 2.  Temperature distributions at Ra* = 9.0×104.

The temperature distribution at the highest modified
Rayleigh number is presented in Figure 2.  Twenty-level
isotherm from Θ=0 to Θ=0.95 are employed without
labeling to keep the clarity of the temperature
distributions.  The position of highest temperature in the
computational domain (Θ=1.0) is not shown by the same
reason.  The distorted isotherms in Figure 2 indicate that
the thermal energy generated from the inner cylinder
predominantly transfers to the outer cylinder by
convection.  More distortion of isotherms is expected at
higher modified Rayleigh number.

It can be seen from Figure 2 that most of the
isotherms are densely compressed within the inner solid
cylinder when K=0.1 and are expanded into the fluid-
filled annular gap when K increases.  This means that the
temperature gradient within the inner solid cylinder is
high when it behaves as an insulator (K is lower than 1.0)
to give the conduction rate within the solid cylinder
identical to the convection rate in the annular gap, or vice
versa.

The abrupt changes in curvature of isotherms in
Figure 2 when conductivity ratio is different from unity
are emphasized again in Figure 3 by the abrupt changes
in the gradients of non-dimensional radial temperature
distributions at the solid-fluid interface of three angular
positions.

The temperature distributions on the solid-fluid
interface at the same modified Rayleigh number are
presented in Figure 4.  They display the influence of K on
the non-dimensional temperatures on the interfaces.  The
lower values of non-dimensional temperatures do not
mean that the dimensional temperatures do because the
maximum temperatures increase when K is decreased.

From the numerical results, it can be inferred that
the surface of the inner cylinder tends to be isothermal
when K approaches infinity.  The Rayleigh number
defined in equation (30) must be calculated at each

modified Rayleigh number to compare with the results of
Kuehn and Goldstein [3].
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Figure 3.  Radial temperature distributions at
Ra* = 9.0×104.
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Figure 4. Temperature distributions on solid-fluid
interface at Ra* = 9.0×104.
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The corresponding Rayleigh numbers calculated
from equation (30) by using the average temperatures of
the inner cylinder surface when K=10.0 as Tmax are in
Table 1.  The cases with modified Rayleigh number of
3.6×104 and 9.0×104 give Rayleigh numbers that can be
closely matched with the cases when Rayleigh numbers
are 3,000 and 6,000 of Kuehn and Goldstein [3].  For
brevity of representation, only the latter case comparison
is explained.

Table 1  Corresponding Rayleigh numbers when K=10.0.
*Ra Ra

3.0×103 348
6.0×103 675
1.0×104 1,068
2.0×104 1,890
3.6×104 2,955
9.0×104 5,939

The numerical values in Table 1 may be slightly
changed if the different sets of numerical properties,
which give the same Prandtl number and modified
Rayleigh number, are employed.  But the set of numerical
properties that results in small temperature difference on
the inner cylinder surface is recommended.

The equivalent thermal conductivity ratios are
calculated for quantitative comparisons.  They are the
ratios between heat transfer by convection and pure
conduction (no fluid motion) defined by the following
equations.
For Heat Gain from the Inner Cylinder Surface:

max min

ln( )

f f
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i o i

T T
l m

k x y
T Tk
r r r

∂ ∂⎛ ⎞
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−

(34)

For Heat Loss from the Outer Cylinder Surface:
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f f
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l m

k x y
T Tk
r r r

∂ ∂⎛ ⎞
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−

(35)

where ri and ro are the inner and outer cylinder radius,
and keq is the equivalent thermal conductivity.

The maximum temperatures in equation (34) and
(35) are the average temperatures of the inner cylinder
surface when K=10.0 used in equation (30) as mentioned
above.  While the minimum temperature is the outer
cylinder surface.

Figure 5 and Figure 6 show the trends of equivalent
thermal conductivity ratios on the inner and outer
cylinder surfaces when K approaches to zero and infinity.
On the inner cylinder surface, the series of curves in
Figure 5 indicates that the curve tends to be identical to
the isothermal surface when K is greater than unity.  On
the other hand, the decreasing in K lower than unity
flattens the curve to be the constant-heat-flux surface.  So

the curves in Figure 6 present the equivalent thermal
conductivity ratios of the outer cylinder when the inner
cylinder surface approaches to be the isothermal and
constant-heat-flux surfaces.

θ
90 120 150 18060300

0.5

1.0

1.5

2.0

3.0

0.0

2.5

eq fk k

Present study

10.0K =
1.0K =
0.1K =

Kuehn & Goldstein [3]

Figure 5.  Local equivalent thermal conductivity ratios on
the inner cylinder surface at Ra* = 9.0×104.

θ
90 120 150 18060300

0.0

1.0

2.0

3.0

4.0

6.0

5.0

eq fk k
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10.0K =

Kuehn & Goldstein [3]
Present study

Figure 6.  Local equivalent thermal conductivity ratios on
the outer cylinder surface at Ra* = 9.0×104.

The average values of the equivalent thermal
conductivity ratios based on the average temperatures of
the inner cylinder surface when K=10.0 at each modified
Rayleigh numbers are summarized in Table 2.  The
agreements between the numerical values of the last two
cases in Table 2 and that of Kuehn and Goldstein [3]
confirm the validity of other values and verify the
reliability of the developed finite element computer
program.

Finally, the discrepancy within 1% of the average
equivalent conductivity ratios at each modified Rayleigh
number in Table 2 guarantees the existence of the set of
the influenced parameters that characterizes the conjugate
natural convection under this situation.  The set of
influenced parameters consists of Prandtl number (Pr),
modified Rayleigh number (Ra*), the ratio of annular gap
width to the inner cylinder diameter (w/di), and the
thermal conductivity ratio (K).
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Table 2  Average equivalent thermal conductivity ratios
on cylinder surfaces.

KRa* Surface
Location 0.1 1.0 10.0

Inner 1.012 1.010 1.0083.0×103
Outer 1.013 1.013 1.013
Inner 1.043 1.041 1.0386.0×103
Outer 1.044 1.044 1.044
Inner 1.099 1.097 1.0941.0×104
Outer 1.099 1.099 1.099
Inner 1.242 1.240 1.2362.0×104
Outer 1.242 1.242 1.242
Inner 1.409 1.408 1.4043.6×104
Outer 1.414 1.414 1.412
Inner 1.731 1.731 1.7259.0×104
Outer 1.742 1.740 1.734

6. Conclusion
Finite element analysis for steady laminar natural

convection in an annulus induced by heat generation
within the inner solid cylinder has been performed.  The
complete set of influenced parameters of this problem
was defined.  When the thermal conductivity ratio is very
large, the inner cylinder surface tends to be isothermal
surface.  The constant-heat-flux inner cylinder surface
may be attained when the thermal conductivity ratio is
very low.  Some numerical results that can be compared
with the results of the classical research concerning to the
natural convection in horizontal annulus show very good
agreements in overall heat transfer performance.  This
consistency confirms the reliability of the developed
computer program.

The concept of this paper can be extended to solve
other multi-physics problems by doubling the nodes on
the interfaces.  A number of equations are introduced into
the system equations for preserving the continuity of
essential and physical boundary conditions (temperature
and heat flux in present study) across the interfaces.  This
increases the complexities of the problems and requires
more CPU time to solve, but the numerical results for
superior designs are available.
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