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Abstract 
A method for kinematics modeling of a six-wheel 
Rocker-Bogie mobile robot is described in detail. The 
forward kinematics is derived by using wheel Jacobian 
matrices in conjunction with wheel-ground contact angle 
estimation. The inverse kinematics is to obtain the wheel 
velocities and steering angles from the desired forward 
velocity and turning rate of the robot. Traction Control is 
also developed to improve traction by comparing 
information from onboard sensors and wheel velocities to 
minimize wheel slip. Finally, simulation of a small robot 
using rocker-bogie suspension has been performed and 
simulate in two conditions of surfaces including climbing 
slope and travel over a ditch. 
Keywords: Rocker-Bogie Suspension / Traction Control 
/ Slip Ratio 
 
1. Introduction 
 The effectiveness of a wheeled mobile robot has 
been proven by NASA by sending a semi-autonomous 
rover "Sojourner" landed on Martian surface in 1997 [1]. 
Future field mobile robots are expected to traverse much 
longer distance over more challenging terrain than 
Sojourner, and perform more difficult tasks. Other 
examples of rough terrain applications for robotic can be 
found in hazardous material handling applications, such 
as explosive ordnance disposal, search and rescue. 
 Corresponding to such growing attention, the 
researches are varying from mechanical design, 
performance of the robot, control system, navigation 
systems, path planning, field test and so on. 
 However, there are very few concerning dynamics 
of the robot. This is because the field robots are 
considered too slow to encounter dynamic effect. And the 
high mobility of the robot, moving in 3 dimensions with 
6 degrees of freedom (X, Y, Z, pitch, yaw, roll), makes 
the kinematics modeling a challenging task than the 
robots which move on flat and smooth surface (3 degrees 
of freedom : X, Y, rotation about Z axis). 
 In rough terrain, it is critical for mobile robots to 
maintain maximum traction. Wheel slip could cause the 
robot to lose control and trapped. Traction control for 
low-speed mobile robots on flat terrain has been studied 
by Reister and Unseren [2] using pseudo velocity to 
synchronize the motion of the wheels during rotation 
about a point. Sreenivasan and Wilcox [3] have 

considered the effects of terrain on traction control by 
assume knowledge of terrain geometry, soil 
characteristics and real-time measurements of wheel-
ground contact forces. However, this information is 
usually unknown or difficult to obtain directly.  Quasi-
static force analysis and fuzzy logic algorithm have been 
proposed for a rocker-bogie robot [4]. 
 Knowledge of terrain geometry is critical to the 
traction control. A method for estimating wheel-ground 
contact angles using only simple on-board sensors has 
been proposed [5]. A model of load-traction factor and 
slip-based traction model has been developed [6]. The 
traveling velocity of the robot is estimated by measure 
the PWM duty ratio driving the wheels. Angular 
velocities of the wheels are also measured then compare 
with estimated traveling velocity to estimate the slip and 
perform traction control loop. 
 In this research work, the method to derive the 
wheel-ground contact angle estimation and kinematics 
modeling of a small six-wheel robot with Rocker - Bogie 
suspension are described. A traction control is proposed 
and integrated with the model then examined by 
simulation. 
 
2. Rocker-Bogie Suspension 
 In this research, the computer model of the robot 
named “Lonotech 10” is built. Its dimensions are 
480x640x480 mm3, consists of six wheels, three on each 
side. Four steering mechanisms are equipped to the front 
and rear wheels. 

 
Figure 1. Lonotech 10 

 
 All independently actuated wheels are connected by 
the Rocker-Bogie suspension, a passive suspension that 
works well at low-velocity. This suspension consists of 
two rocker arms connected to the sides of the robot body. 
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At one end of each rocker is connected to pivot of the 
smaller rocker, the bogie, and the other end has a 
steerable wheel attached. Two wheels are attached to the 
end of these bogies. The rockers connected to the body 
via a differential link. This configuration maintains the 
pitch of the body equal to the average angle between the 
two rockers. This mechanism also provides an important 
mobility characteristic of the robot: one wheel can be 
lifted vertically while other wheels remain in contact with 
the ground. 
  
3. Wheel-Ground Contact Angle Estimation 
 To formulate kinematics modeling for the mobile 
robot, the wheel-ground contact angles must be known. 
But it is difficult to make a direct measurement of these 
angles, a method for estimating the contact angles based 
on [5] is implemented to the rocker-bogie suspension in 
this section. 
 In kinematics modeling and contact angle 
estimation, we introduce the following assumptions. 

1) Each wheel makes contact with the ground at a 
single point. 

2) No side slip and rolling slip between a wheel and 
the ground. 

 Consider the left bogie on uneven terrain, the bogie 
pitch, 1μ , is defined with respect to the horizon. The 
wheel center velocities, 1v  and 2v , are parallel to the 
wheel-ground tangent plane. The distance between the 
wheel centers is BL  

BL
1μ 1ρ

2ρ

1v

2v

 
 

Figure 2.  The left bogie on uneven terrain 
 
 The kinematics equations can be written as 
following 
  1 1 1 2 2 1cos( ) cos( )v vρ μ ρ μ− = −   (1) 
 1 1 1 2 2 1 1sin( ) sin( ) Bv v Lρ μ ρ μ μ− − − =   (2) 

Combining Equations (1) and (2): 
1 1 2 1 1 1 2 1sin[( ) ( )] ( / ) cos( )BL vρ μ ρ μ μ ρ μ− − − = −   

Define 1 1 1/Ba L vμ= , 1 2 1/b v v=  
Contact angles of the wheel 1 and 2 are given by 

[ ]1
2

1
2
111 2/)(arcsin aba −+= μρ   (3) 

[ ]1
2

1
2
112 2/)1(arcsin aba −++= μρ   (4) 

 In order to compute the contact angle of the rear 
wheel, we need to know velocity of the bogie joint first. 
 
Define 

1Br : rotation radius of the left bogie 

 1μ : angular velocity of the left bogie 
The velocity of the bogie joint can be written as: 

111
μBB rv =  

BL
1μ

1ρ

2ρ

1v

2v
λ

d

2A

1A

1Bv
1r

1Br

2r
1B

1C

 
Figure 3.  Instantaneous center of rotation  

of the left bogie 
 
where )90cos(2 122

22
21

λμρ −−+−+= drdrrB

 1 2 1 1 2sin(90 ) / sin( )Br L ρ μ ρ ρ= + − −
 2 1 1 1 2sin(90 ) / sin( )Br L ρ μ ρ ρ= − + −  
 Consider Left Rocker, the rocker pitch, 1τ , is defined 
with respect to the horizon direction. The distance 
between rear wheel center and bogie joint is RL . 

1Bv

RL
1τ

1Bρ

3ρ

3v

 
Figure 4.  Left Rocker on an uneven terrain 

 
 Contact angles of the wheel 3 is 

1 13 3 1arccos[( / ) cos( )]B Bv vρ ρ τ= −   (5) 
 In the same way, we repeated these procedures with 
the right side: 

[ ]2
2
2

2
224 2/)(arcsin aba −+= μρ   (6) 

[ ]2
2
2

2
225 2/)1(arcsin aba −++= μρ   (7) 

)]cos()/arccos[( 266 22
τρρ −= BB vv   (8) 

 There are special cases that the contact angle cannot 
be estimated [5]. First occur when the robot is stationary. 
Pitch rates of the bogie and rocker cannot be computed. 
Then equations (3)-(5) do not yield a solution. Since a 
robot in a fixed configuration has an infinite set of 
contact angles. The second case occurs when the bogie is 
parallel to the surface and the front wheel encounter a 
vertical obstacle with respect to the surface. 

BL
1μ

1v

1v 01 >μ

01 <μ

 
Figure 5.  Left Bogie where 0cos 1 =ε  

 
 However, by observation that 2v  is zero, equation 
(1) and (2) can be written as 

1 1 1cos( ) 0v ρ μ− =   (9) 
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1 1 1 1sin( ) Bv Lρ μ μ− =   (10) 
The variable 2ρ  is undefined since wheel 2 is stationary, 
and 

1 1 1sgn( )
2
πρ μ μ= +   (11) 

 The last case occurs when 1ρ  is equal to 2ρ . The 
pitch rate 1μ  is zero and ratio of 2v  and 1v  is unity. Then 
equations (3)-(5) have no solution. But it is easy to detect 
constant pitch rate from an inclinometer. If the bogie is 
on the flat terrain, the contact angles are equal to the pitch 
angle. In the case that pitch rate is zero temporary; we 
assume that the terrain profile varies slowly with respect 
to data sampling rate and use previously to estimate 
contact angle instead. 

 
Figure 6.  Left Bogie where 01 =μ  and 0

1

2 =
v
v  

4. Forward Kinematics 
 We define coordinate frames as in Fig. 7 and 8. The 
subscripts for the coordinate frames are as follows:  O : 
robot frame, D : differential joint, iB : left and right 
bogie ( 2,1=i ), iS : steering of left front, left rear, right 
front and right rear wheels ( 6,4,3,1=i ) and iA : Axle of 
all wheels ( 61−=i ). Other quantities shown are steering 
angles iψ  ( 6,4,3,1=i ), rocker angle β , left and right 
bogie angle 1γ  and 2γ . 
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Figure 7.  Left Coordinate frames 

DZ

DX

DY
OX

OY
β

2l

6l

8l

3l

4l

5l
5l

537 lll +=

4SZ

4SX
4SY

4AZ
4AY

4AX

4ψ

5AZ
5AY

5AX

6AZ

6AY

6AX

6ψ

2BY

2BZ 2γ
2BX

1l

OZ6SZ

6SX

6SY

 
Figure 8.  Right Coordinate frames 

 By following the Denavit-Hartenburg notation [7], 
the transformation matrix for coordinate i  to j  can be 
written as follows: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
ΘΘ−ΘΘ
ΘΘΘ−Θ

=

1000
0,

jjj

jjjjjjj

jjjjjjj

ij dCS
SasCCCS
CaSSCSC

αα
αα
αα

T  

where jΘ , jα , ja and jd  are the D-H parameters given 
for coordinate frame j . In this transformation, we have 
used the notation jCΘ = jΘcos and jSΘ = jΘsin , etc. 
 The transformations from the robot reference frame 
( O ) to the wheel axle frames ( iA ) are obtained by 
cascading the individual transformations. For example, 
the transformations for wheel 1 are 

111111 ,,,,, ASSBBDDOAO TTTTT =  
 In order to capture the wheel motion, we need to 
derive two additional coordinate frames for each wheel, 
contact frame and motion frame. Contact frame is 
obtained by rotating the wheel axle frame ( iA ) about the 
z-axis followed by a 90 degree rotation about the x-axis. 
The z-axis of the contact frame ( iC ) points away from 
the contact point as shown in Fig. 7. 

iCXiCZ iAY

iAX
Φ

Wheel 4, 5, 6

iCXiCZ

iAY

iAX
Φ

Wheel 1, 2, 3
 

Figure 9.  Contact Coordinate Frame 
 
 The transformation matrices for contact frame are 
derived using Z-X-Y Euler angle 

,

0
0
0

0 0 0 1

i i

i i i i i i i i i i i i

i i i i i
A C

i i i i i i i i i i i i

Cp Cr Sp Sq Sr Cr Sp Cp Sq Sr Cq Sr
Cq Sp Cp Cq Sq

Cr Sp Sq Cp Cr Cp Cr Sq Sp Sr Cq Cr

− + −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥+ − +
⎢ ⎥
⎣ ⎦

T  

where ip , iq  and ir are rotation angle about X, Y and Z 
respectively. ii pCp cos= and ii pSp sin= , etc. 
 The wheel motion frame is obtained by translating 
along the negative z-axis by wheel radius ( wR ) and 
translating along the x-axis for wheel roll ( iwR θ ) 

iCZ

iCX

iMZ

iMX

iθ

 
Figure 10.  Wheel Motion Frame 

 
 The transformation matrices for all wheels can be 
written as follows: 
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1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2

3 3 3 3 3 3 3 3
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O M O D D B B S S A A C C M

O M O D D B B A A C C M

O M O D D S S A A

=

=

=

=

=

=

T T T T T T T

T T T T T T

T T T T T T

T T T T T T T

T T T T T T

T T T T T
6 6 6 6, ,C C MT

 

 In order to obtain the wheel Jacobian matrices, the 
motion of the robot is express in the wheel motion frame, 
by applying the transformation OMMOOO ii ,ˆ,ˆ,ˆ TTT =  and can 

be written in the following form as 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

1000
0

0
0

,ˆ zrp
yr
xp

OO

φ
φ

T  (12) 

where φ  = yaw angle of the robot 
 p  = pitch angle of the robot 
 r  = roll angle of the robot 
 Once the instantaneous transformations are 
obtained, we can extract a set of equations relating the 
robot’s motion in vector form [ ]Tx y z p rφ  to 
the joint angular rates. The results of the left and right 
front wheel are found to be 

0
0
0

0 0 0
0 1 1 0
0 0 0

i i i

i i i i

i i i

i i

i

i

A B Cx
D E Fy
G H Iz

J
p

Kr

θ
β

φ γ
ψ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ − − ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 4,1=i  (13) 

 The results of wheel 2 and 5 (the left and right 
middle wheel) are found to be 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

i

i
ii

i

ii

ED
C

BA

r
p

z
y
x

γ
β
θ

φ

000
110

000
0

00
0

               2,5i =  (14) 

 The results of wheel 3 and 6 (the left and right back 
wheel) are found to be 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

i

i

i

i

ii

ii

ii

H

G
FE
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BA

r
p
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x

ψ
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φ

00
010

00
0
0
0

              3,6i =  (15) 

where θ  is the angular velocity of the wheel, β is the 
rocker pitch rate, γ is the bogie pitch rate and ψ is the 
steering rate of the steerable wheel. 
 

 The parameters iA  to iK  in the matrices above can 
be easily derived in terms of wheel-ground contact angle 

),..,( 61 ρρ  and joint angle ,,( γβ and )ψ . For example, 
the parameter 1A of the front left wheel is 

)()([
))2(2(

1
11112

1
1 ψψργβ

ρ
SCCC

S
A −+

+−
=

)]200400200( 1
2

1
2

1111 ρρρρψρ SCSCSS +−+  
 
 We will see that the 5th equation (5th row) does not 
contribute to any unknowns. It simply states that the 
change in pitch is equal to the change in the bogie and 
rocker angles. With the help of an installed inclinometer , 
p can be sensed without knowledge of the rocker and 

bogie angles. Since only the p , in equation (13) to (15), 

contains γ  and β , we can remove these for further 
consideration. 
 
5. Inverse Kinematics 
 The purpose of inverse kinematics is to determine 
the individual wheel rolling velocities which will 
accomplish desired robot motion. The desired robot 
motion is given by forward velocity and turning rate. In 
this section, we will develop all 6 wheels rolling 
velocities with geometric approach to determine steering 
angle of steerable wheels. 
5.1 Wheel Rolling Velocities 
 Consider forward kinematics of the front wheel 
(12), define the desired forward velocity is dx  and 

desired heading angular rate is dφ . The first and the 
fourth equation give 

iid

iiiiiid

J

CBAx

ψφ

ψγθ

=

++=
                1,3i =  (16) 

The rolling velocities of the front wheels can be written 
as 

id
i

i
iidi A

J
CBx /)( φγθ −−=  1,3i =  (17) 

Similarly, the rolling velocities of the middle wheels can 
be written as 

iiidi ABx /)( γθ −=   2,5i =  (18) 
Finally the rolling velocities of the back wheels can be 
written as 

id
i

i
di A

G
Bx /)( φθ −=   3,6i =  (19) 

5.2 Steering Angles 
 Center of rotation is estimated based on two non-
steerable middle wheels. This turning center will be used 
to determine the steering angles of the four corner 
wheels. From Fig. 7 and 8, we can derive coordinate of 
the wheel centers respect to the robot reference frame as 
follows: 

DRC010



 

1 2 3 4 1 5 1

2 2 3 8 1 5 1

3 6 3 5

4 2 3 4 2 5 2

5 2 3 8 2 8

cos sin cos( ) sin( )
cos sin cos( ) sin( )

cos ( )sin
cos( ) sin( ) cos( ) sin( )
cos( ) sin( ) cos( ) sin(

C

C

C

C

C

x l l l l
x l l l l
x l l l
x l l l l
x l l l l

β β β γ β γ
β β β γ β γ
β β
β β β γ β γ
β β β γ β

= + + − + −

= + − − + −

= − + +
= − − − + − + + − +

= − − − − − + + − + 2

6 6 3 5

)
cos( ) ( )sinCx l l l

γ
β β= − − − +

 

 

 
Figure 11.  Instantaneous Center of Rotation 

 
 From Fig. 11, the instantaneous center of rotation 
can be estimated by average the x position of the middle 
wheels. The distance in Z axis is neglected because there 
is only 1 degree of freedom per each steering. If the 
wheel’s axis is steered to intersect with the center of 
rotation on the X axis, the angle in Z direction is coupled 
and cannot be controlled. 
 Using the estimated center of rotation, the desired 
steering angle for each steerable wheel can be 
determined. Define R is a turning radius, Rx  is the 
distance in X-direction of the center of rotation with 
respect to the robot reference frame. 1l  is the distance 
from the robot reference frame to steering joint in Y-
direction (see figure 7 and 8). The desired steering angles 
are 

[ ]1 1 1arctan ( ) /( )C Rx x R lψ = − −  for wheel 1 

[ ]3 3 1arctan ( ) /( )C Rx x R lψ = − −  for wheel 3 

[ ]4 4 1arctan ( ) /( )C Rx x R lψ = − +  for wheel 4 

[ ]6 6 1arctan ( ) /( )C Rx x R lψ = − +  for wheel 6 
 
6. Traction Control 
 In section 4 and 5, we assume that there is no side 
slip and rolling slip between wheel and ground. Then slip 
must be minimizing to guarantee accuracy of the 
kinematics model. The slip ratio S , of each wheel is 
defined as follows [6]: 

⎩
⎨
⎧

<−
>−

=
):(/)(
):(/)(

ngdecelerativrvvr
ngaccelerativrrvr

S
wwwww

wwwww

θθ
θθθ

  (30) 

where r  = radius of the wheel 
 wθ  = rotating angle of the wheel 

 wrθ  = wheel circumference velocity 
 wv  = traveling velocity of the wheel 

S  is positive when the robot is accelerating and negative 
when decelerating. 
 From the slip ratio, a robot can travel stably when 
the slip ratio is around 0 and will be stuck when the ratio 
is around 1. To gain maximum traction, we must keep the 
slip ratio at a small as possible. 
 

Figure 12.  Robot Control Schematic 
 
 By measuring of the wheel angles with information 
from the accelerometer, we can minimize slip so that the 
traction of the robot is improved. The control problem is 
to control the slip S  to a desired set point dS  that is 
either constant or commanded from a higher-level control 
system. The feedback value Ŝ  is computed from a slip 
estimator. To complete the estimation of the slip, we need 
the rolling velocity and the traveling velocity of the 
wheels, ω  and wv . Rolling velocity of the wheels is 
easily obtained from encoders which installed in all 
wheels. Traveling velocity of the wheel can be computed 
from robot velocity by using data from onboard 
accelerometer. 
 The robot velocity can be obtained by integrating 
the accelerometer signal. Then use this value as an input 
to the inverse kinematics to compute the rolling velocities 
of all wheels. Then multiply by wheel radius, we can 
obtain the traveling velocity of the wheels. 
 
7. Experiment 
 The traction control system was verified by 
simulation on Visual Nastran 4D. In Fig. 12, the robot 
climbs up a 30-degree slope, with coefficient of friction 
about 0.5. 

 
Figure 13.  Robot climbing up a slope 

  
 As a result, in case without control, the robot was 
running at 55 mm/s, then the front wheels touched the 
slope at 5.0=t sec. and begin to climb up. Robot 
velocity measured in reduced to 25 mm/s. But the robot 
can continue to climb until the middle wheels touch the 
slope at 9=t sec. The velocity reduced to nearly zero. 
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Figure 14.  Velocity and Slip ratio when climbing up 
 30 degrees slope 

 
 In case with control, the sequence was almost the 
same until 5.0=t sec. The velocity reduced to 
approximately 35 mm/s when the front wheels touched 
the slope. At 6=t sec., the middle wheels touched the 
slope and velocity reduced to about 28 mm/s. And both 
rear wheels begin to climb up the slope at 15=t sec. with 
velocity approximately 20m/s. 

 
Figure 15.  Traversing over a ditch 

 
 In Fig. 15, the robot traversed over a ditch, which 
has 32 mm depth and 73 mm width with coefficient of 
friction about 0.5. The robot was commanded to move at 
55 mm/s, and then the front wheels went down the ditch 
at 5.0=t sec. The velocity of the robot increased 
temporary and begin to climb up when front wheels touch 
the up-edge of the ditch. But the wheels slipped with the 
ground and failed to climb up. Then the slip ratio went up 
to 1 ( 1=S ), the robot has stuck and the velocity 
decreased about zero at 5.1=t sec. 
 With traction control, after the front wheels went 
down the ditch, the slip ratio was increased. Then the 
controller tried to decelerate to decrease the slip ratio. 
When the slip ratio was around 0.5, the robot continued 
to climb up. Until 5.4=t sec., both of the front wheels 
went up the ditch completely and the robot velocity 
increased to the 55 mm/s as commanded. 
 At 6=t sec., the middle wheels went down the 

ditch. The robot velocity also increased temporary and 
back to 55 mm/s again when the middle wheels went up 
completely. The last two wheels went down the ditch at 

13=t sec. and the sequence was repeated in the same 
way as front and middle wheels. 
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Figure 16.  Velocity and Slip ratio when traversing 

 over a ditch 
 
7. Conclusion 
 In this research, the wheel-ground contact angle 
estimation has been presented and integrated into a 
kinematics modeling. Unlike the available methods that 
applicable to the robots operating on flat and smooth 
terrain, the proposed method uses the Denavit-Hartenburg 
notation like a serial link robot, due to the rocker-bogie 
suspension characteristics. The steering angle is 
estimated by using geometric approach. 
 A traction controller is proposed based on the slip 
ratio. The slip ratio is estimated from wheel rolling 
velocities and the robot velocity. The traction control 
strategy is to minimize this slip ratio. So the robot can 
traverse over obstacle without being stuck. 
 The traction control strategy is verified in the 
simulation with two conditions. Climbing up the slope 
and moving over a ditch with coefficient of friction 0.5. 
The robot velocity and slip ratio are compared between 
using traction control and without using traction control 
system. 
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