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Abstract

In this paper, a number of well-established population-based
optimisation methods i.e. genetic algorithms, stud — genetic
algorithms,  simulated annealing and population based
incremental learning are briefly reviewed and compared in terms
of their philosophical basis. The use of the optimisation methods
for compliance minimisation of plates is demonstrated. The paper
also presents the approximated density distribution technique to
prevent checkerboard formation in topology design as well as to
From the

reduce the size of topological design variables.

optimum solutions obtained using the various optimisation
methods, the performances of the methods are compared and

discussed.

1. Introduction

Topology optimisation is a special kind of structural shape
optimisation. This design process is employed when designers
need to find a new structural configuration for particular use as
shown in Figure 1. In topology optimisation problem, with a given
design domain, the task is to find structural layout that gives the
optimum of desired objective functions e.g. weight, system
compliance, deflection and natural frequency whilst fulfilling
design constraints. From numerical viewpoint, by the use of Finite
Element Method (FEM) for structural analysis, topological design
can be performed by discretising a structure into a number of
connected finite elements. Design variables determine the
distribution of element density, which means that elements with
nearly zero density represent voids on the structure whereas
other elements indicate the existence of structural material [1].

One of the most preferable optimisation methods for topology
design is Optimality Criteria Method (OCM) [2] as it is arguably
the most powerful method for this task. Also, the classical
gradient-based methods such as Sequential Linear Programming

(SLP) and the Method of Moving Asymptotes (MMA) were

implemented successfully [3]. There have been a few publications
concerning the applications of population-based methods for
topology design and most of them referred to Genetic Algorithms
(GAs) e.g. [4-6]. Despite the capability of reaching a global
optimum of GAs, the methods seem to be ineffective when used
in topology design. This is due to the large number of topological
design variables and, consequently, a great many of function
evaluations are needed when performing GAs for solving such a
design problem. However, it cannot be totally concluded that all
the population-based or evolutionary methods are inferior since
some other evolutionary methods are rarely applied, and there
have been a number of research articles indicating that the more
successful evolutionary search is wusually obtained from
performing a few evolutionary methods for one design problem

[7].

Figure 1 Topology Optimisation

This paper demonstrates the use of evolutionary algorithms
for solving structural topology optimisation. The checkerboard
suppression scheme here is the application of an Approximated
Density Distribution (ADD) technique. Structural topology is
represented by interpolation coefficients whereas the objective
function is structural compliance. Two sets of design variables
are examined. The evolutionary algorithms consist of Genetic

Algorithm (GA), Simulated Annealing (SA), Population Based



Incremental Learning (PBIL) and Stud-Genetic Algorithm (Stud-
GA). The methods are briefly reviewed and implemented on the
topological design problem. The main investigation is aimed at
comparing the performance of the evolutionary methods. The
optimum results from using the various design strategies are
obtained, illustrated and compared in terms of convergence rate

and consistency.

2. Topology Optimisation

Figure 2 displays the finite element model of a plate under
in-plane loading. The structure is divided into a number of
rectangular elements. The topological design variables represent
the elements’ density (or thickness in cases of 2D structures)
and, at the post-process, will define a structural configuration. A

typical form of topology design problem can be posed as:

Find P densities of the elements such that

Min: fiP) Q)
Subject to
gp)<o

0<pPmm<pP=1
where P is the vector of topological design variables that are
usually elements’ density

fis the objective function
and g is the vector of inequality constraints.

Classical design objective functions are structural
compliance, natural frequencies and buckling factors relying on
predetermined design concepts. Structural weight or mass is
normally set as a design constraint. Other constraints are unlikely
to be included in the problem as it would lead to some more
difficulty in solving the problem since this problem is expected to

have a great number of design variables.

Figure 2 Discretised structure

3. Approximated Density Distribution (ADD) Technique

ADD is a simple numerical technique exploiting the
interpolation techniques for approximation of elements’ density
from the known density at some particular points. From a
rectangular design domain being meshed into n elements as
shown in Figure 3, let r,0 be the position vectors of m sampling
points (plus sign) and rkv be the position vector of the centre
points of the n elements (‘o’ sign). With the idea of interpolation
with radial-basis functions, the densities at the centre points of

the elements, pv, can be approximated from the given densities

at the sampling points, po, by the relation:

p' =CA'p’ =Tp’ @)
where € =[c, ], = [/ (d(x},r}))]=[(d)]
A =[a;],.,, =@, e} N]=[1(d;)]
fld,)=1+d, +d; +d;
and d(ri’rj (ri _rj)T(ri _rj) :

For more details, see [8]. By using the relation (2), the
topological design problem (1) becomes:
Min:  ApP°) 3)
Subject to

gp) <o

0< Prn< TP < 1.
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Figure 3 Sampling points and elements’ centre points

4. Evolutionary Algorithms

Evolutionary Algorithms (EAs) sometimes referred to as
population-based methods are the optimisation methods that
search for optima based upon evolutionary and random
mechanisms. The methods start the search with a group of initial
solutions called population and the population are then evolved,
in some manner, generation by generation until reaching the

optimum. The evolutionary methods presented here are as

follows:



4.1 Genetic Algorithms

Genetic algorithms are probably the best known of the
evolutionary algorithms. This approach can be best thought of as
mimicking Darwinian natural selection in that a population of
solutions (genes) is generated and then the next generation is
produced by mating pairs of these genes. The genes have the
opportunity of being selected based on their merit. The selected
genes are reproduced by means of crossover and mutation
The next

yielding the new population or next generation.

generation is iteratively evolved until an optimum is achieved [9].

4.2 Stud-Genetic Algorithm

A slight modification of classical GA is called Stud-GA which
claims to improve significantly the performance of the traditional
GA whilst maintaining its simplicity and binary string
representation [10]. Rather than maintaining a large population of
different solutions, the best gene (stud) from an initial population
is chosen and then the new population is generated by mutating
the stud until the offspring have the same size as the initial
population. After mutation, bit positions of each offspring are
allowed to be shuffled by the given probability. The process is

repeated until convergence is reached

4.3 Population-Based Incremental Learning

Population Based Incremental Learning (PBIL) [11] has a
different feature from GA in that the population is represented by
the probability vector of being ‘1’ of each bit position of binary
strings. Figure 4 shows probability vectors used in PBIL where
row vectors of the population matrix represent genes. It can be
concluded that one probability vector can form a variety of
populations. Initially, the search procedure starts with the initial
probability vector whose elements are full of ‘0.5". The probability
vector is then updated based upon the given learning rate and
the binary string of the current best solution and allowed to be
mutated with a predefined probability. The vector is updated

iteratively until convergence is achieved.

population 1 population 2 population 3

oo 1 1, o0 1 1 0 0 1 01
1 1 0 0 1 1 0 1, 1 0 0 1
o0 1 1, 1 0 1 0, 0 0 0 1
11 0 o O 0 O I, O I 0O
Probability Vectors

[0.5, 0.5, 0.5, 0.5] [0.5, 0.5, 0.5, 0.5] [0.25, 0.5, 0, 0.75]

Figure 4 Probability vector

4.4 Simulated Annealing

Simulated annealing [12] & [13] sometimes is classified to be
evolutionary method as GA and the others. The method is based
upon mimicking the random behaviour of molecules during the
annealing process, which involves slow cooling from a high
temperature. As the temperature cools, the atoms line themselves
up and form a crystal, which is the state of minimum energy in the
system. The search procedure of SA is to start with a single initial
solution and it is then adjusted in some manner to produce a few
candidates. The best candidate is selected to be a new parent if
its objective is better than the parent or it is accepted by the
Boltzmann probability. The process is repeated until the optimum

is reached.

5. Numerical Implementations

The design case study is the topology optimisation of a
cantilever plate under in-plane loading as depicted in Figure 5.
The plate is made up of material with 200%10° N/m” Young
modulus and 0.3 Poisson’s ratio while F =100 N, L =3 m and H
= 1 m. The plate is discretised into 30X10 elements whereas
there are 15X7 sampling points that are equispaced along x and
y directions. This means that, by using ADD, the size of design
variables is reduced from 300 to 105. Two different sets of design
variables are taken into consideration. The first set called SET1 is
that the thicknesses at the sampling points are either one or zero.
This implies that the design variables are represented by a 105-
bit binary string. The second set of design variables, SET2, is a
series of binary string as traditionally used in a usual GA search.
Note that, with the application of evolutionary algorithms using
binary string representing design variables, the bound constraints
can be excluded from the optimisation problem as they can be
dealt with at the decoding process. Therefore the problem can be
written as:
Find P such that
Min:  fp’)=U'KU )
Subject to g(P°) = m(P°) - Pm(1) <0
where [:)0 is the vector of design variables
U is structural displacement

K is structural stiffness matrix

77 is mass reduction ratio
m is structural mass
and m(1) is the initial structural mass.
Since the evolutionary methods can not cope with

constrained optimisation directly, the problem (4) has to be



modified by using a penalty function technique leading to an

unconstrained optimisation problem having the new objective as

F(p") ==L+ 2u(p") ®)
f+1
0 forg(p®) <0
u=41g(p")/a for0< g(p’)<a
1 forg(p’)>a

where

and a is a small number to be specified. This strategy is the
modification of the work presented in [14].

In order to benchmark the performance of the algorithms,
the methods start with the same initial solution and have the
same number of generations i.e. 200 generations with the
population size being 100. This implies that there are 20000
function evaluations on each run. To serve the feature of SA
which requires a few candidates on each loop, the number of
loops is set to be 500 with 40 candidates being created. Thus,
there are equal numbers of function evaluations for every
method. Each method is operated five attempts to measure its
consistency. Also, note that the number of iterations and
population size are assigned merely for measuring the algorithms
performance. As a result, it cannot be assured that the obtained

results will reach or close to the optimum.
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Figure 5 Cantilever plate

6. Results

The optimum here means the best solution obtained from
last generation of an evolutionary method. The optimum results
from SA and PBIL using the SET1 design variables are illustrated
in Figure 6 while the results from GA and Stud-GA are shown in
Figure 7. Table 1 displays the optimum solutions after performing
the algorithms five times. The results show that SA has the best
convergence rate while the most consistent method is PBIL. Most

of the topologies are said to be checkerboard-free.
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Figure 6 Optimum results of SA & PBIL with SET1 variables
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Figure 7 Optimum results of GA & Stud-GA with SET1 variables

No. SA PBIL GA StudGA
1 0.7367 0.8190 0.7732 0.9074
2 0.7672 0.8351 0.7785 0.8822
3 0.7744 0.8060 0.8061 0.8926
4 0.7556 0.7681 0.8545 0.8474
5 0.8315 0.8016 0.8039 0.8516

AV 0.7731 0.8060 0.8032 0.8762

STD | 0.0356 0.0249 0.0322 0.0261

Table 1 Optimum results using SET1 variables

The optimum results of SA and PBIL for SET2 design
variables are displayed in Figure 8 and the results from using GA
and Stud-GA are in Figure 9. Table 2 shows the objective
function values obtained from operating the methods five times. It
can be said that PBIL gives the best convergence rate whilst SA
and GA are the most consistent for the design variables of SET2.
Most of the solutions are inferior to that obtained by using the
SET1 design variables and they are said to be checkerboard-

free.
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Figure 8 Optimum results of SA & PBIL with SET2 variables
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Figure 9 Optimum results of GA & Stud-GA with SET2 variables

No. SA PBIL GA StudGA
1 0.8880 | 0.8391 0.9392 | 0.9033
2 0.9197 | 0.8278 | 0.9572 | 0.9550
3 0.9292 | 0.8179 | 0.9500 | 0.9451
4 0.8955 | 0.7723 | 0.9083 | 0.8284
5 0.9269 | 0.7462 | 0.9341 0.9372

AV | 09118 | 0.8007 | 0.9377 | 0.9138

STD | 0.0189 | 0.0396 | 0.0188 | 0.0515

Table 2 Optimum results using SET2 variables

Figure 10 illustrates the optimum solution obtained from
solving the problem (3) using the gradient-based method,
sequential quadratic programming with 105 design variables. In
figure 11, the optimum topology of the plate obtained from solving
the design problem (1) directly using the optimality criteria
method (with 300 design variables being used) is shown. When
comparing these two topologies to those obtained from
implementing the evolutionary algorithms, it can be said that the
use of evolutionary algorithms for this task is still inferior to the
gradient-based method. In order to obtain the better solution by

using EA, a great many of function evaluations must be

executed. The evolutionary algorithms are, nevertheless, still
useful when the objective function is not continuous or when it is
difficult or even impossible to compute the function derivatives.
Apart from that, the gradient-based methods with poor derivative
approximation often lead to unsuccessful search but this problem
never occurs when using EAs. Therefore, the population-based
optimisation methods are always proposed as an alternative
choice since the solution will usually be achieved (at slower rate

of convergence).
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Figure 10 Optimum topology by SQP

Figure 11 Optimum topology by OCM

7. Conclusions

The proposed evolutionary algorithms are applicable to
topology optimisation. The ADD technique is a powerful tool for
preventing checkerboard pattern in topological design. Using
SET1 design variables gives the better design solutions when
compared to the use of SET2 design variables. SA is the best
among the four methods in terms of convergence rate when
SET1 is applied and PBIL is superior to the others with SET2

being used.
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