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Abstract

The aim of this paper is to investigate the problem of ro-
bust H o controller design with pole-clustering or circular pole
constraints. The problem we address is to design an output
feedback controller such that, for all admissible parameter un-
certainties, the closed-loop system satisfies not only the prespec-
ified Hoo norm constraint on the transfer function from the dis-
turbance input to the system output, but also the prespecified
circular pole constraint on the closed-loop system matrix. The
necessary and sufficient conditions for the existence of desired
controllers are derived in terms of a linear maitrix inequality
(LMI). From the simulation results, the system responses with
the proposed controller and the standard Hoo controller are
compared.

Keywords: robust H~, control, robust pole placement.

1 Introduction

In control sysetms design, it is currently desirable to design
controller achieving robust stability due to parametric uncer-
tainties, especially in the study of robust H~ control problem
whose the objective is to design controllers such that the closed-
loop system is stable and the o, norm of a specified closed-
loop transfer function is minimized. Athough the Hoo control
problem can be regarded as robustness against exogenous signal
uncertainty, in the case when parameter uncertainty appears in
the plant modelling, robust behavior on H., performance as
well as stability cannot be guaranteed by standard Ho control.
This lead to the study of robust Hoo control problem. However,
both the standard Hoo control and robust Hso control are little
concerned with the transient behavior of the closed-loop system
such as [9, 10] and [12].

In order to improve the transient behavior, it is well-known
that the pole location is directly related to the dynamical char-
acteristics of linear system such as damping ratios, natural and
damped natural frequencies. Therefore, it is also desired to con-
struct control systems to achieve better transient performance
as well as robust stability simultaneously. A more practical
way is to place the closed-loop poles in a suitable region of
the complex plane, especially in circular region. Hence, it may
be concluded that the closed-loop poles in a specified region
guarantees both stabiltiy and the transient performance such
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as settling time, maximum overshoot, and rise time. For the
closed-loop pole placement in a specified region, there has been
continuing interest in designing controller in both nominal and
uncertain systems. Many researchers have investigated in this
problem such as in [4] for systems without uncertainties and in
[3] for systems with uncertainties.

However, there have recently been a few reports in [6, 7] that
combine robust Hoo control with pole-clustering constraints not
only to assure in robust stability, but also to improve better
transient performance for power systems.

The rest of this paper is organized as follows. In next section,
a statement of problem is provided. In Section 3, the necessary
and sufficient conditions for the existence of robust Hs, con-
troller design with circular pole constraints are derived in terms
of a linear matrix inequality (LMI) in order to design a desired
controller. In Section 4, an illustrative example is considered
to the feasibility of this proposed method and also compared
with the standard robust Hso controller. From the simulation
results, the system reponses with the proposed controller are
better transient responses. Finally, we conclude in Section 5.

2 Problem Statement

We are interested in an uncertain system which has the fol-
lowing form:

i(t) = (A+AA)x(t) + (Bu + ABy)u(t) + (Fu + AFy)w(t)
= Az(t) + Byu(t) + Fpw(t) (1)
y(t) = C=() (2)

where z(t) € R™ is the state-vector of the system, u(t) € R"«
is the control-vector of the system, y(t) € R"v is the output-
vector, and w(t) € R is the disturbance vector of the system.
The system matrices A, By, Fy, and C have their proper di-
mensions and are assumed to be completely controllable and ob-
servable. The matrices AA, AB,,, and AF}, represent the para-
metric perturbation in the system state matrix, control input
matrix, and disturbance input matrix, respectively, which are
assumed to be the following norm-bounded uncertainty form:

(AA AB, AF, )=H\A( E E. E,) (3)
where A € ®%*! is an uncertain matrix bound by
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and Hi, E, E,, and E,, are the constant matrices of appropri-
ate dimensions which specify how the elements of the nominal
matrices A, By, and Fy, are affected by the A. Also, AA,
ABy, and AF,, are said to be admissible, if both (3) and (4)
hold.
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Figure 1: D(a,r) Region

The problem of interest can be formulated in determining
(21) such that the
following performance criteria or design requirement are simul-

a linear output feedback controller K(s) in

taneously achieved.

1. All closed-loop poles are assigned in a stable disk region
D(a,r) in the complex plane with the center at —a +
jO (a > 0) and the radius r (r < ) in Figure 1.

2. The Hoo norm of the closed-loop transfer function Ty (s)
from w(t) to y(t) meets the constraint ||Tyw(s)|lco < v

where v is a given constant and Tyw(s) = Cu(A)[s] —

A (A)] 71 By (A) in (22) and (23).

3 Main Results

3.1 System Analysis

In this section, we first provide some important lemmas which
will be useful in the derivation of our main results.

Lemma 1 (Garcia and Bernussou [3]) Let A € R™X™ be

a gien matriz. Then all the poles of the closed-loop system

are located with a given circular region D(a,r), i.e., AN(A) C
D(a,r), if and only if there exists Q > 0 such that

ALQA, —Q <0
where A, = (A+al)/r.

Lemma 2 Given a constant v > 0 and o disk D(a,r), both
and 2.

inequality has a positive matriz Q > 0 such that

2 ' -2 ’
( rQ-I—oz(C’C’A-I;’Y QF,F.Q) _$1><0 5)

where Ao = A+ al. In addition, from a Schur complement,

requirements 1. are satisfied if the following matriz

(5) can be rewritten as:

—r2Q * * *
Ao —Q~ ' % *
<0 6
vaC 0 —I * (6)
VaF!Q 0 0 —2I
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Proof: By using a Schur complement [1], we can get the
quadratic matrix inequality from (5) as follows.

A'QA+ (&> —r)Q+ a(A'Q+ QA
+Y2QFWF,Q+C'C) <0 (7)
or
Al QAq —12Q 4+ a(v 2QFL,F.L,Q+C'C) <0 (8)

Tt is easy to show that the circular pole requirement (1) will
be met by using Lemma 1 as follows:

Q- 4,QA: > (1P QFLF,Q+C'C) >0 9)
where Fy, is of full row rank. Next, we can rearrange (7) as
follows:

AQ+ QA+ ?QFWFLQ+C'C+X <0 (10)

where ¥ = a " HA'QA + (a® — r2)Q] > 0. To show that the
requirement 2. is also met, this proof of ||Tyw(s)||ecc < 7 is
completely similar to that of Theorem 1 of Wang [9]. |

Remark 1 From Lemma 2, we can alternatively construct an-
other LMI condition, as shown in (11), which is equivalent to
the LMI condition in (5) and (6).

a(A'Q + QA) * * * *
A Q1 x * *
BQ 0 -Q * <0 (11)
vaC 0 0 -TI *
VaF!Q 0 0 0 —2I

where 8 = Va2 —r2.

Lemma 3 (Xie [11]) Given matrices G,H and E of appro-
priate dimensions and G = G', then

G+ HAE+FEANH <0

holds for any admissible uncertain matriz A satisfying A'A <

I, if and only if there exists a scalar € > 0 such that

G+ eHH + ¢ 'E'E < 0.

Definition 1 The unforced uncertain system in (1) (setting
u(t) = 0) is satisfied with the above performance criteria, if
there exists Q > 0 such that

( —r2Q +a(C'C + 7 2QFLFLQ)  *

i o ) <0. (12)

If these uncertainties can be represented in (3) according to
Definition 1, the necessary and sufficient LMI conditions are
stated as follows:

Theorem 1 As for the unforced uncertain linear system, the
desired circular pole region D(a,r) and the Hoo norm bound
constraint v > 0 on attenuation of disturbance are given. The
system (1) is satisfied with requirement 1. and 2. if and only if
there ezists a scalar € > 0 and a symmetrical positive definite
matriz P € R"*™ such that

-r2P PA! « * P T
AP —P % * * * * *
VaCP 0 -1 * * ok X K
VaF, 0 0 —2T x % x % <0. (13)
0 0 0 vaE, —el % * *
EP 0 0 0 0 —el x *
eH| 0 0 0 0 0 —el x
0 eH, 0 0 0 0 0 —e



Proof: We begin with pre- and post-multiplying (12) by the
matrix U’ and U, respectively, where U = diag{P,I}. Hence,

we have:
P Y oul 20 * Nu<o (14)
AP —P Ao —Q

where P = —r2P 4 a(PC'CP + vy 2F,F), O = —r2Q +

a(C'C +~y 2QF,F! Q),and P = QL.
From Definition 1, we need to show that (13) is equivalent to
(14). Based on (4), (14) can be rewritten as:

—r2p * * *
Aa P —P * *

JaCP 0 -1 + HAE + (HAE) <0 (15)

\/aF{U 0 0 —’y?I
where
H; 0
0 H1 X A *
H = 7A = )
0 0 (0 A)
0 0

e 0 0 0 VaBy,
~ \EP 0 O 0 '
By using Lemma 3, the matrix inequality (15) holds for all A

satisfying with (4) if and only if there exists a matrix P > 0
and a scalar € > 0 such that

—r2P PA!, \/aPC' \/aF,

AqP —P
\faCP 0 OI 8 +eHH +e e <0 (16)
a _
VaF!, 0 0 —2I
or
—r2P  x  x *
AaP —P
Jeer o *1 : _K'L7'K <0 (17)
a _
VaF! 0 0 —y2I
where
0 0 0 aEy —el % * *
K= EP 0 0 0 r= 0 —el % *
“leH; 0 0 0 Tl o 0 —el
0 eH, 0 0O 0 0 0 —el

Then using the Schur complement, it is straightforward to verify
that this inequality (17) is equivalent to (13). |

3.2 Controller Design

For the design problem, we consider the following norm-
bounded uncertain systems (1). The uncertainties are described
by

AA AB AF, H,
(AC Bu A, ):(Hz )A(E B, B, ) (18)
where AC is assumed to be used in practice and x are ne-
glected. Next, our approach for robust ., controller with
pole-clustering constraints is proposed by using Theorem 1.
We consider the uncertain system in (1) and desire to place

all closed-loop poles of uncertain systems in D(«, ) region and
satisfy the prespecified H~ norm constraint simultaneously via
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a full order output feedback controller. Hence, the state space
equations of the desired controller can be shown as follows:

tx(t) = Arzr(t)+ Bry(t) (19)

u(t) = Cgzr(t) (20)

where zx(t) € R"K*"K is the state of the controller, and
Ak, Bk, and Ck are matrices with the appropriate dimensions

that can be determined. For a dynamic output feedback con-
troller, we denote its transfer function as follows.

K(s) = Cx(sI — Ax)"'Bg (21)

Hence, the overall closed-loop system is given by:

Tey (t) = Acl(A)xcl(t) + Bcl(A)w(t) (22)
y(t) = CCI(A)Icl(t) (23)
where
Ac A Bc A Ac Bc T n
() Pr™) = (et P )+ s (),
t A B, C
z(t) = ( mf((&) ) , Aol = ( BrC AKK ) >
H = (Bg}h),E:(E E.Ck ),
B, = ( l;w )aCcl—( ¢ 0 )

Theorem 2 As for the uncertain linear systems (1), the de-
sired circular pole region D(a,r) and the Hoo norm bound con-
straint v > 0 on the disturbance rejection are given. The closed-
loop system can acheive the expected performance requirement
1. and 2. if and only if there exist X, Y, A, B,C, and a scalar
€ > 0 such that

Qi1 * * * * * * *
Q21 Q22 * * * * * *
Q31 0 I * * * * *
Q 21
41 0 0 ¥ * * * * <0 (249)
0 0 0 VaE, —el % * *
Q51 0 0 0 0 —el * *
Q1 O 0 0 0 0 —el x
0 Q6 O 0 0 0 0 —el
where
r2Xx *
Q = -
1 ( r2I  r2y
0 _ AX + BC + aX A+al
= A+al YA+ B.C+aY
X %
Q = —
22 < I v ) }
Q= a ( cx ) ,
Qi = va( F, FY ),
Q51 = ( EX +Eué E ) )
Q1 = e H HY+HB ).

As a result, a dynamic output feedback controller can be con-
structed as:

A =
B =

(NY"Y(A=YAX — N'BgCX —YB,Cx M)M™1,
(N 'B,Cx =CM~".



where X and Y are arbitrary nonsingular matrices satisfying
M'N=1-XY.

Proof: (Necessity) It is obvious that the matrix P and the
controller parameters in the matrix Ag in (25) are unknown
and occur in nonlinear fashion.

—r?P  PAl, * * ok x %

Ag P —P % * * * * *

VaCyP 0 —I % * ok k%
VaB!, 0 0 —2I x % x % <0 (25)

0 0 0 VaEy —el *x x %

EP 0 0 0 0 —el x %

eH] 0 o0 0 0 0 —e *

0 efA] 0 0 0 0 0 —eI

Consequently, we apply a method of changing variables from
Scherer [8] so that the matrix inequality (25) can be reduced to
an LMI in all variables.

First, we define the partitioning of the matrix P and P! as

P:<X M’>’P1:<Y N’)y
M U N o Q

where the order of controller ng is equal to the order of plant
n. Then we pre-multiply and post-multiply (25) by J' and J,
respectively, where J = diag{©®2,02,I,1,1,1,1,I}. Therefore,
we can get:

04(~r2P)O, * x  x  x x  x %
©L,A, POy OL(—P)O2 * * *x  x  *  x
VaC, POy 0 - % *  x  x %
VaB!,0, 0 0 —%T * * * * <0
0 0 0 VaEy —el x x %
EPO, 0 0 0 0 —el % *
eH] O, 0 0 0 0 0 —el %
0 eHi1® 0 0 0 0 0 —el
where
@1:=<X I>,®2:2<I Y).
M 0 0 N

Then it is also apparent that
X
PO = ©1,0,P0 = 00, = ( ; ; ) > 0.

We substitute A, A1, F, and P in (25), and need to change
the controller variables to new ones as:

A = YAX+N'BgxCX +YB,CxM + N' A M
B := N'Bg
C = CkgM.

Additionally, we can easily check each term in (25) as follows:

r2X *
r2I  r2y

04(-r2P)O>

AX + B X A I
©,A,POs — +BC+a +a
A+ al YA+ B,C + oY
X %
0,PO, =
VaCy POy = \/a( cx C)
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VaBL©: = va( F, F,Y)
EPo: = ((EX+E.C E )
efioy = e H HY+mB )

which imply that (24) holds.

(Sufficiency:) We assume that there exist X,Y, A, B, C, and a
scalar € > 0 satisfying (24). Now, assume M and N are arbi-
trary nonsingular matrices satisfying I — XY = M'N. Define

Ax = (N)"YA-YAX - BCX -YB,C)M~!
Bx = (N)'B
Cxk = CM™!
P = 007!
where
X I Iy
0, = , 02 = .
M 0 0 N

Note that P = 0,07 = P/ = (0/)710@),. Next, we will
show that the above P is a solution to (25).
Ak,Bk,Ck, and P into (25) to yield:

Substituting

-rP = (047101107, AyP = (04) 1021 (02) 7}
—P = (05710005, VaCyP = 23105
VaBl, = Qu05', EP =Q50;", ed] = Q605"
where Q11,...,Q61 are the same as (24). | |

Remark 2 [t is obvious that (24) is not an LMI due to the
product of a scalar € with variables Y and B, respectively. As
a result, the LMI software fails to solve (24). However, we are
able to achieve difficulty by setting € as a prior value and then
apply the LMI software. We need to tune € until the solver

returns a feasible solution.

Remark 3 In this problem, when the Hoo constraint is not
considered (v — o0), the problem reduces to robust controller
design with pole-clustering constraints considered in [5]. Hence,
(13) is reduced to the following LMI:

—r2P % * * —r2P x % %
AP —P % * _ AP —P % * <0
EP 0 —el % EP 0 I x

0 eH| 0 —el 0 H 0 -I

Similarly, when the pole-clustering constraint is not included,
the problem is reduced to the standard robust Hoo controller
design. As a result, (13) is reduced to the following LMI:

AP+ PA % * * *
CP —I * * *
F!, 0 2T % * <0 (26)
EP 0 Ey —el *
eH| 0 0 0 —el

Remark 4 [t is easy to design the state feedback controller as
in [6] when all state variables can be available.



4 Simulation Results

To demonstrate the efficiency of the proposed method, we
first study the robustness of the proposed controller against the
variation of system parameters. By using LMI Control Toolbox
(2], the proposed robust Heo controller is compared with the
standard robust Hoo one from (26).

From a system model in (1) as follows:

—a b 0 0 —-b
e 0 —c c 0 ~ 0
4 = —-d 0 —e —e Fu = 0
0.6 0 0 0 0

B, = (0 0 e

The range of the system parameter variation are given below:

a | b | c
[0.033,0.1] | [4,12] | [2.564,4.762]

d | e |
9.615,17.857] | [3.081,10.639] |

Here, we need to employ important parameters as follows:

e Nominal parameters

—0.0665 8 0 0
4 - 0 —3.663  3.663 0
- —6.86 0 —13.736  —13.736
0.6 0 0 0
B = (0 0 13736 0)
F = (-8 0 0 0)

e The structure of considered uncertainties in (3).

!

2 0 0 0 0

H = 0 2 0 0| ,E,= 0 ,
0 0 10 0 0.4121
—~0.0168 0 —0.3779 \’

n 2 —0.5495 0

= 0 0.5495  —0.4121 | °
0 0 —0.4121
Ew = (2 0 0).

We would like to enforce all closed-loop poles in D(80.28, 80),
according to Remark 2, assume ¢ = 0.00101, and vy = 582.88
with circular pole constraints, while ¥y = 165.05 without cir-
cular ones. By using a unit step input in this simulation, the
responses of y(t) are shown in Figure 2 where consist of the
upper and lower bounds of parameter variations and nominal
parameter which are defined in Table 1.

Table 1: Parameters in three cases

Case | a | b | c | d e
Upper case 0.1 12 4.762 17.857 10.630
Nominal case 0.0665 8 3.663 13.736 6.86

Lower case 0.033 4 2.564 9.615 3.081

In addition, it is well-known that the difference in the shape
of the transient responses from the nominal responses are an
indication of the performance robustness. To show performance
robustness of all method, we define the norms (A') and absolute

DRCO018

sums (X) as follows:

A 1/2
Nubp = |:Z[l’np(tk) — mubp(tk)P
j=0
A 1/2
Ny = [Z[mnp(tk) - mlbp(tk-)}?
=0
k
Eubp = Z ‘xnp(tk') - CL'ubp(tk:)‘
j=0
k
Swp = D [Tap(te) — zpp(te)]

0

~.
Il

where Tnp(tr), ZTupp(tr) and zyp,(ty) represent the nominal,
upper bound and lower bound value of any state x(t) at time
tr, respectively. The numerical results of the performance ro-
bustness are shown in Table 2.

Table 2: Comparison of performance robustness of both meth-
ods for the time responses

Method | Nupb | Nipy | Supb | Zipb
Our method 0.0521 0.1566 3.5469 11.687
The standard method | 0.0864 0.2572 7.6624 23.111

From Figure 2 and Table 2, it is obvious that the deviation
from the nominal value of the perturbed system (upper and
lower limits) is much less in case of the proposed method com-
pared with that of two methods mentioned. This means that
the performance robustness of the proposed controller is supe-
rior compared to these methods. Also, it is very clear that the
transient performance is improved and can be achieved such as
maximum overshoot, settling time, and rise time which are both
smaller and shorter, while the other methods cannot. These are
related to pole locations in a specified region. In Figure 3, it
is apparent that all closed-loop poles are placed in a desired
region. From these figures, it is obvious that the transient re-
sponses in increment frequency deviation y(t) does decay faster
and exhibit smaller overshoot as well as shorter settling time,
when the the circular pole constraint is included in our proposed
controller design. Roughly speaking, the more all closed-loop
poles is pushed toward LHP, the more the settling time and
overshoot decrease quickly. Also, we are able to use this circu-
lar pole constraint in regulating the control input and avoiding
the saturation in any systems.

5 Conclusions

In this paper, a controller design problem involving both pole-
clustering constraint and the prespecified H~ norm constraint
using LMI approach is considered. The aim of this paper is to
design a suitable controller which is able to achieve robust sta-
bility and to improve the transient responses of the uncertain
system, simultanuously. The necessary and sufficient conditions
for the existence of a desired controller have proved and the fea-
sible solution to LMI can be used to find a desired controller.
In comparision with the standard robust Hoo controller, the
system responses with the proposed controller gives better tran-
sient responses with respect to settling time, rise time, and max-
imum overshoot in all cases of the system parameter variations.



— Nominal case

— - Upper case
System response based on Lower case
—0.015- the proposed method 7
~0.02 I I I I I I I I I
[¢] 1 2 3 4 5 6 7 8 9 10

System response based on
the standard robust Hinf control method

0 1 2 3 Tll’jhe (seéc.) 6 7 8 9 10

Figure 2: The responses of y(t) from two methods
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Figure 3: Pole locations

Besides, it is shown that the transient responses of the proposed
controller with pole-clustering constraints is improved.
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List of Symbols
o R: The set of real numbers.
e R™: The set of real m-vector.
e R™X™: The vector space of m X n real matrices.
e X': The transpose of a matrix X € R™X",

e I: The identity matrix of size m of the identity of linear
operator. We omit the subscript when m can be deter-
mined from context.

e X~1: The inverse of X or the inverse of linear operator
X, ie, XX =1.

e X > 0: The symmetric X is positive definite, i.e., X =
XT and 27Xz > 0 for all z € R".

e ¢c: belongs to

e x: The symbol x is used for terms that are induced by
symmetry whenever symmetric block matrices or long
A
matrix expressions are encountered, i.e., =
B C
A B
B C J

o H: The square block M signals an end to theorem state-
ments and proofs.



