
 

 The 19th Conference of Mechanical Engineering Network of Thailand 
 19-21  October  2005,  Phuket,  Thailand 

 
Stabilizing of an Inverted Pendulum Using Computed Feedback 

Linearization Technique 
 

Ratchatin Chanchareon1*  Jaruboot Kananai 1  Supavut Chantranuwathana1 

1 Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University,  
Bangkok 10330, Thailand. 

E-mail: Ratchatin.C@eng.chula.ac.th 
 

Abstract 
In the paper, a stabilization controller for balanced rod 
inverted pendulum is proposed. The proposed technique, 
based on pole placement over the first order linearized 
model around a trajectory, approximately linearize the 
pendulum system. Once the system is approximately 
linear, it becomes asymptotically stable. Several tools 
such as roots and phase portraits are used to analyze the 
nonlinear system behavior. The simulation and 
experiment, based on ECP 505 inverted pendulum plant, 
is used to demonstrate and verify the proposed technique. 
Compared to the LQG controller, the proposed technique 
shows a superior result, i.e., both the transient response 
and steady state error are improved and the region of 
stability is also wider. 
Keywords: Inverted pendulum, Feedback linearization, 
Under-actuated mechanical system. 
 
1. Introduction 
 The inverted pendulum has been widely used to 
investigate and develop new control strategies that can 
effectively deal with nonlinearities. The main challenge is 
that the plant is a nonlinear, under-actuated mechanical 
system with unstable zero dynamics and is to be 
controlled such that the position is at its unstable 
equilibrium. There are a number of research efforts to 
stabilize this system since the late 1970s. The most 
popular technique to stabilize this system at a desired 
position is using an optimal linear quadratic regulator 
(LQR) based upon a linearized plant.  
 The other candidate for nonlinear controller is based 
on Artificial Neural Network and Fuzzy logic controller 
[1,2,3]. The state feedback gains, as a nonlinear function 
of state, can be realized using neuro-fuzzy system. In 
recent years, the sliding mode controller based on fuzzy 
logic [4] draws much attention in control the nonlinear 
system such as an inverted pendulum. 
  There are a number of configurations of inverted 
pendulum systems such as the classic “cart and pole” 
inverted pendulum [5], the double- [6] and triple- 
inverted pendulum on a cart, the rotary inverted 
pendulum [1,4,7], parallel type inverted pendulum [2], 
the spherical inverted pendulum [8], two link inverted 
pendulum [9], etc. All of these systems are nonlinear, 
under-actuated system with unstable zero dynamics. 
 Since an inverted pendulum is under-actuated, the 
system is not completely linearizable. Thus, the control 
task is normally separated into two different tasks, first a 
swing up control and a latter a balance control. In order to 

swing up the pendulum, several strategies based on 
partial feedback linearization, passivity and energy 
shaping are proposed [5]. When the system is brought 
close enough to the equilibrium, the control strategy 
switches to a stabilizing control. Since, the system is 
linearizable around the equilibrium, the LQR based 
controller could be design. The paper aims to address 
how to systematically deal with under-actuated nonlinear 
mechanical system using the balanced rod inverted 
pendulum as an example. Several tools have been used to 
analyze and design the optimal controller for such 
system. 
 The proposed technique called “computed feedback 
linearization” is based on pole placement over the first 
order linearized model around a trajectory. The strategy is 
to keep the closed loop system’s roots fixed, thus the 
system becomes approximately linear. If the roots are on 
the left half plane, i.e., their real part is less than zero, the 
system is asymptotically stable. Both simulation and 
experiment based on ECP 505 balanced rod inverted 
pendulum are used to demonstrate and verify the 
technique. 
 The paper is organized into seven sections. The first 
section is introduction. The second is the model of the 
balanced rod invert pendulum. The third and fourth 
sections are about the LQG and computed feedback 
controller respectively. Simulation and experimental 
results are shown and discussed in the fifth and sixth 
sections respectively.  The seventh section gives the 
conclusion of the paper. 
 
2. Model of the ECP 505 Inverted Pendulum 
 The ECP 505 inverted pendulum consists of a 
pendulum rod which supports the sliding balance rod.  
The DC servo motor, below the pendulum rod, is used to 
drive the sliding balance rod through a drive shaft, a 
pulley and a belt. This sliding rod is to be steered 
horizontally in order to control the vertical pendulum rod. 
The center of gravity, and thus the system dynamics, can 
be altered by adjusting the brass counter weight position. 
The position of the sliding rod and the pendulum rod are 
sensed by two encoders, one at the back of the motor and 
the other one at the pivoting base of the pendulum.  
 The mathematical model of the ECP 505 system can 
be derived using Euler-Lagrange equation or the 
Newtonian approach. However, the first approach is used 
in this paper as follows; 
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The Lagrange equation is: 
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where 
L=T-V 
T: kinetic energy 
V: potential energy 
Qq: generalized forces 
q: generalized coordinates 

 
The q is selected as [θ, x]T. Thus, the kinetic energy, T, is 
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The potential energy, V, is 
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The Euler-Lagrange equations result in 
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 This system is highly nonlinear, having two degrees 
of freedom with only one actuator. There is also a 
nonlinear coupling between the actuated and the un-
actuated degrees of freedom. 
 
Table 1  Plant Parameter 
Symbol Value Description 
m1 0.213 kg Mass of sliding rod 

m2 1.785 kg Mass of complete assembly 
minus m1 

J0
 0.036 kg.m2 The equivalent J of the system 

l0 0.330 m Length of pendulum rod 
lc 0.0281 m The position of center of m2 
g 9.81 m/s2 Gravity 
 The system parameters used in the simulation are 
given in table 1. This is the nominal parameters for the 
ECP 505 plant and the controller is design based on these 
values. 
 
3. LQ Controller Design based upon linearized plant 
Local Linearization about equilibrium 
 A linearized approximation of the system about the 
equilibrium point [xe θe] = [0 0] which only the first two 
(zeroeth and first order) terms of Taylor’s series 
expansion are used is found as 
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 The result is the same as setting sin(θ) and cos(θ) 
equal to θ  and 1 respectively and  the x  and θ  are 
setting equal to zero. 
 The linearized approximation can be written in state 
space form as 
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LQG Controller 
 Since the open loop system is both naturally 
unstable and non-minimum phase, the full state feedback 
is recommended to control the system. The LQR 
synthesis, via matrix Riccati equation, is used to 
determine the optimal gains which the following cost 
function is minimized 

( )dtRuQxxJ ∫ +′= 2     (3) 

 
 Subject to the linear time invariant dynamics 
x Ax Bu= +      (4) 
 
 The matrices Q and R are positive semi-definite and 
definite respectively.   
 Once the optimal gains is determined, the feedback 
control law is  

)()( tKxtu −=      (5) 
 

 In the simulation, the Q and R are set to 1 and 10 
respectively. This results in the optimal gains K = [4.6314 
1.4197 8.8969 2.6202]. The roots of the closed loop 
system are the eigenvalues of [A-BK] and is found to be 
 
r1,2 = -0.2998 ± 6.2053i,  r3,4 = -3.3318 ± 0.1275i 
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4. Computed Feedback Linearization 
 The LQG controller is based upon the linearized 
plant, thus, the performance is well predictable only at 
the neighborhood of the equilibrium point. When the 
system travels far away from the equilibrium, the control 
performance degrades or the system may become 
unstable.  
Consider the following nonlinear system. 

( ) ( ( ), ( ))x t f x t u t=     (6) 
where  x(t) ∈ RN is a state vector at time t. 
 u(t) ∈ RM is an input vector. 
The linearized model along the trajectory at state x0 can 
be written as  

0 0 0 0 0( , )x A x f x u A x Bu= + − +   (7) 

where  A0 is the Jacobian 0 0( ( ), ( ))f x t u t
x
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 Set the full state feedback u(xo,x) as 
( )0 0 0 0( , )A x f x u

u Kx
B

−
= −    (8) 

Thus, the closed loop system becomes 

0( )x A BK x= −     (9) 
 The feedback gains, K, can be determined such that 
the eigenvalues of  0( )A BK−  is at specified location 
using pole placement technique. 
 

 
Figure 1  The sub-equilibrium function 

 
 The proposed technique, called computed feedback 
linearization, determines the appropriate gains at every 
position such that the system roots are fixed at a specified 
location. First, the gains at the equilibrium point are 
determined by the LQG synthesis as explained earlier. 
Once the gains at the equilibrium are determined, the 
system roots at this point are obtained. The gains at other 
system positions are determined based upon the 
linearized plant around a trajectory at each time step. 
Then, the pole placement technique is used to determine 
the appropriate gains such that the closed loop system 
having the roots fixed at the specified location. Once the 
roots are fixed and the nonlinear feedforword term, f(x,e) 
is zero out, the closed loop system becomes 
approximately linear. Since all roots are in the left half 

plane, the exponential stable is obtained. Actually, this 
technique determines the nonlinear function of u(x,θ) to 
gives the closed loop system linear.  
 Since the system is not only nonlinear but also 
under-actuated, the control problem becomes much more 
difficult. We are unable to determine the nonlinear 
function u(x,θ) at every position of θ and x in order to 
transform the system into a linear one. In the other word, 
the system is not completely linearizable. The state is 
thus partitioned into actuated degree, x, and under-
actuated degree, θ. In our strategy, the x(θ), the sub-
equilibrium function, is determined first. This sub-
equilibrium function determines the position of x that 
gives the position of θ in equilibrium. Generally 
speaking, some degrees of freedom are in equilibrium at 
these points, while the rests are not. Since only the θ  is in 
equilibrium but the x may not be, thus, the control force, 
u, is required to control the x position. The nonlinear 
system is linearizable at the sub-equilibrium positions 
and can be controlled such that the roots are fixed at a 
specified location. It is noted that if the whole system is 
stable, the system will be moving around these positions. 
Thus, the linearized model is accurate enough and the 
closed loop system can be approximately linear. The 
linear control theory can be used to justify the control 
performance of the closed loop system.  
 In this paper, the system starts somewhere near the 
sub-equilibrium, the system then asymptotically converts 
to a desired sub-equilibrium position. If the system is at 
point far from the sub-equilibrium, another control 
strategy should be used to bring the system close to the 
sub-equilibrium. The strategy to bring the system close to 
the sub-equilibrium is typically based on partial feedback 
linearization, passivity and energy shaping, and is not 
mentioned in this paper. 
 
5. Simulation Results 
 In this section, the matlab® simulation based on 
‘ode45’ is used to demonstrate the technique. In Fig. 2, 
the step response is asymptotically stabilized at ±0.35 
radian when using the proposed controller. The LQG 
controller is unable to stabilize the plant at this position. 
The tracking response, shown in Fig. 3, demonstrate that 
the system is able to track the sinusoidal trajectory quite 
well. In both cases, the linear behavior is observed.  
 

 
Figure 2  Stabilizing the pendulum at 0.35 radian 
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Figure 3  Tracking Performance at 0.7 pp Sine, 0.05 Hz 

Reference Trajectory. 
 
 Compared to the LQG controller, the proposed 
technique shows superior performance in both transient 
response and steady state error as shown in Fig. 4. The 
feedback gain designed by LQG synthesis at equilibrium 
is difficult to stabilize the system at the position far from 
the equilibrium (0.2 radian in the case shown in Fig. 4). 
The steady state error is also detected. The proposed 
technique accurately computed the gain at each time step, 
such that the roots are fixed and the feedforward term is 
cancelled out. Thus, the control performance is 
significantly improved. 
  

 
a) LQG Controller 

 
b) Computed Feedback Linearization 

Figure 4  Stabilizing Performance at 0.2 Radian 
compared to LQG controller 

 
 The roots portrait in Fig. 5 demonstrates system 
characteristic in s- domain when constant feedback gain 
is used to stabilize the system. The gain is optimally 

design at the equilibrium based on LQR synthesis. When 
the system travels away from this point, but still in the 
sub-equilibrium, the closed loop poles drifts as shown in 
the plot. The width of the root trajectory shows the 
nonlinear feedforward input which increasingly arises as 
the system travels away from the equilibrium. This term 
can be regards as a predetermined disturbance and can be 
cancelled out to enhance the control performance. In the 
pendulum example, all of the system roots are in the left 
haft plane and actually the nonlinear feedforward input is 
the one that makes the system unstable.   
 

 
a) The roots trajectory 

 

 
b) The remaining feedforward input 

Figure 5  The roots portrait 
 
 In Fig. 5b, the feedforward input is plotted against 
the pendulum rod angle. The magnitude of feedforward 
term is low and it can be negligible when rod angle is 
within ±20°. The ECP 505 plant has a stopper at these 
positions to limit the rod motion beyond this range. The 
LQG can not stabilize the plant at the position beyond 
this range as demonstrated earlier while the proposed 
controller eliminates this feedforward input and thus 
significantly improves the system stability. 
 
Table 2  Starting positions 
Case θ x θ  x  
1 -30 0.0480 1 0.01 
2 -20 0.0303 -2 0.02 
3 0 0 5 0.05 
4 10 -0.0146 -3 -0.03 
5 20 -0.0303 2 0.01 
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a) Pendulum angle 

 
b) Balanced Rod Position 

Figure 6  The phase portrait 
 

 

Figure 7  The x-θ trajectory of case #5 
 
 The proposed technique is also tested with various 
starting positions shown in Table 2. The phase diagrams 
of both pendulum rod and balanced rod are shown in Fig. 
6. The system asymptotically converted to the goal at 0.2 
radian in every case. For the case number #5, the 
trajectory is shown in Fig. 7. This shows that the system 
travels around the sub-equilibrium position along the way 
to the goal. 
 
6. Experimental Results 
 The ECP 505 inverted pendulum, shown in Fig 8, is 
used to validate the proposed technique. The control 

algorithm is implemented through Delta-tau Pmac lite 
DSP card that comes with the plant. The sampling rate is 
set to 0.00884 second and digital filter is also 
implemented. 
 

 
Figure 8  The ECP 505 plant 

 

 Since the plant is designed to limit the range of the 
pendulum rod to ±20° where the nonlinear feedforward 
input can be negligible, the LQG controller is able to 
stabilize the system. Thus, the superiority of the proposed 
technique is not well demonstrated since both controllers 
give almost the same results.  
 

 
a) Step response 

 
b) Sinusoidal Reference at 0.25 Hz 

Figure 9  Experimental Result 
 

 

 The step response, shown in Fig. 9a, demonstrate 
the stability of the proposed technique. However, the 
steady state error is observed. This is because the 
controller is design based on imprecise model and could 
be further improved. Fig. 9b shows that the plant can 
track the sinusoidal trajectory quite well. We are now 
modifying the plant and also its controller for further 
investigation. 
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 7. Conclusion 
 Although, the under-actuated inverted pendulum 
cannot be completely linearized, it can be accurately 
linearized around the sub-equilibrium. Thus, the LQG 
controller could be designed based upon the linearized 
model around this point, i.e., the controller gains are 
computed at each discrete time step. The gains are 
determined such that the closed loop poles are fixed in 
the s-plane and thus the system becomes approximately 
linear. The paper also address the nonlinear feedforward 
term which arises when the system is far from the 
equilibrium and thus should be cancelled out to 
significantly improve the system stability. The simulation 
results demonstrate that our technique is superior than the 
LQG based upon the linearized model around the 
equilibrium. The experiment is also used to validate the 
technique.  
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