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Abstract 
This paper addresses the problem of motion planning for 
nonholonomic mobile robots working in extreme 
environments, for example, desert, forest, and mine.  In 
such environments, the mobile robots are highly subject 
to external disturbances, which introduce control and 
sensory uncertainties.  The complexity of this motion 
planning problem arises when both nonholonomic 
constraints and uncertainties must be taken into account 
simultaneously.  In this work, we seek the most robust 
path/motion respecting nonholonomic constraints for 
mobile robots in the presence of control and sensory 
uncertainty.  A new motion planner based on a Linear 
Control Uncertainty Field (LCUF) approach is proposed.  
In this approach, the allowable control uncertainty for 
every configuration of a mobile robot in a free workspace 
is computed, and then searched by an optimization 
method for the most robust path connecting given initial 
and goal configurations in the workspace.  The path 
obtained from this motion planner is proved to be 
optimal, and the minimum LCU of the path can be used 
to estimate how much control uncertainty is allowed 
while avoiding collisions.      
Keywords:  Nonholonomic, Motion Planning, Mobile 
Robot, Uncertainty 
 
1. Introduction 

Autonomous mobile robots are being developed and 
deployed in many real-world applications, for example, 
underground mining, military surveillance, and even 
space exploration.  In those applications, the mobile 
robots often operate in harsh working environments, 
where the robots tend to be more susceptible to 
disturbances from the environment.  The effect of the 
uncertainties on the performance of the robot navigation 
becomes critical when it works in cluttered or tight 
environments, i.e., where the robot size is comparable to 
the size of its working space.  For the mobile robot to 
effectively navigate itself through such environment 
under uncertainties, its navigation system must take 
advantage of the information about the environment 
geometry as well as the mobile robot geometry to 
minimize the effect of uncertainties.   

The goal of this research is to construct a motion 
planning method capable of finding a path that is most 
tolerant to uncertainties.  A large number of motion 
planning techniques for nonholonomic mobile robots 
(e.g., wheeled or tracked mobile robots) have been 
proposed using various approaches.  Optimal control 
approaches, based on Pontryagin’s Maximum Principle, 
have been applied to find optimal controls that minimize 
some objective functions (e.g., time, distance, expended 
energy, and etc.) subject to some constraints such as 
actuator limitations [1].  

Nonlinear control techniques include differential-
geometric and differential-algebraic techniques [2], 
geometric phase methods [3], and control 
parameterization approaches [4].  All of these studies 
focus on determining open loop controls which steer a 
nonholonomic system from an initial state to a final state 
over finite time in an unobstructed workspace.  Laumond 
et al. [5] applied the results from optimal control and 
nonlinear control techniques in developing motion 
planners for nonholonomic systems in the presence of 
obstacles.  Mirtich and Canny [6] have proposed a unique 
approach in planning a path for a car-like robot moving 
among obstacles using maximal clearance skeletons.  
However, none of the approaches previously mentioned 
takes into account the effect of uncertainties, which 
happen in real applications.   

In the past decade, a group of researchers have 
started to incorporate the effect of uncertainties into the 
motion planning problem for nonholonomic systems.  
Among the pioneer researches is Jacobs and Canny’s 
work [7].  They developed the concept of δ-robustness as 
a means to measure the degree of robustness of a planned 
path.  The application of probability theory was also 
introduced when Timcenko and Allen [8] proposed a 
motion planning method for mobile robots in the 
presence of sensory and control uncertainties.   

Recently, a work by Lambert and Le Fort-Piat [9] 
has shown a method in developing a motion planning for 
mobile robots in the presence of bounded uncertainties by 
introducing the concept of a security margin.  However, 
the authors only used the concept of security margin as a 
means to check robustness of a pre-planned path 
generated by an A* search method but not to plan a path.   

 

DRC036

 
 
 
 
 
 
 
 
 
 
 
 
 

 



It is clear that none of the previous works studies 
directly how the degree of uncertainties dictates the shape 
of a planned path in a given environment.  Moreover, the 
previous works cannot provide answers to how much 
uncertainty in a mobile robot is allowed to navigate 
safely through a given environment on a given path, and 
to what the best possible path is for a given environment.  
To address the shortcoming of the existing works, we 
have developed a novel motion planning algorithm for 
nonholonomic mobile robots under control and sensing 
uncertainties.  The algorithm plans the most robust path 
that the robots must follow, so that the likelihood of 
collisions due to the presence of uncertainties is 
eliminated.  We also have developed a method for 
determining the allowable maximum degree of control 
and sensing uncertainties for the mobile robots to follow 
a given path safely.   

This paper is organized as follows.  First, the mobile 
robot and workspace models used throughout this 
research are introduced.  Second, the types of 
uncertainties in robot systems and how they can be 
combined are discussed.  Third, the concept of combined 
uncertainty leading to the introduction of “Linear Control 
Uncertainty (LCU)” is given, and this concept is later 
developed into the “Liner Control Uncertainty Field 
(LCUF)”.  Then, a new type of nonholonomic motion 
planning based on the LCUF is proposed.  Finally, the 
results and discussion, including the conclusion, are 
given.     

 
2.  Robot and Workspace Models 

A kinematic model for a differentially-driven 
wheeled mobile robot is selected to be the robot model 
for both wheeled and tracked mobile robots.  Equation (1) 
shows the system of ODEs representing the robot model. 
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where x is the system state, and (xc, yc) are the 

coordinates of the origin of the robot-fixed coordinate 
frame {xy} with respect to the global coordinate frame 
{XY}, see Figure 1. The angle θ  represents the robot 
heading angle with respect to X-axis. Control u consists 
of the linear velocity v and the angular velocity ω.  

From (1), the controls of the mobile robot are linear 
and angular velocities.  However, the actual controls we 
provide to the mobile robot are right and left wheel 
velocities as shown in Figure 1.  The following equations 
can be used to computed the linear and angular velocities 
when the values of right and left wheel velocities, vr and 
vl, are available.    
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where B is the robot wheel base.  
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Figure 1.  A mobile robot model. 
 
Knowledge about the robot workspace in this study 

is assumed to be partially known.  A two-dimensional 
map representing approximately the locations of 
obstacles comprises segments of straight lines forming 
polygons and boundaries.  The segments of straight lines 
are represented by a set of linear equations and their end 
points in the global coordinate frame {XY}, as shown in 
(3) below. 
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where mi = slope, ci = Y-axis intercept 
             si = start point, ei = end point 
              i = index number, N = total number of lines  
 
A line parallel to the Y-axis will be represented by 

(4) with its end points. 
                          ix d=                               (4) 

 
3. Uncertainties in Robot Systems 

The primary forms of uncertainties entering robot 
systems can be categorized into three types: model, 
sensory, and control uncertainties.  Model uncertainty 
appears due to un-modeled dynamics and inaccurate 
parameters of the robot system.  Sensory uncertainty 
happens from the fact that there is no perfect sensor 
which can measure physical quantities exactly.  
Therefore, sensory data obtained from sensors always 
have more or less built-in uncertainties.  Control 
uncertainty can also be clearly seen from the objective of 
control itself.  The discrepancy between a desired output 
and a real output of a control system gives rise to the 
control uncertainty.   

In this research, the kinematic model (1) is used to 
describe the robot system.  At any instance, this 
kinematic model posits a constraint that the robot can 
only move in the direction tangent to its trajectory, but 
cannot move sideways.  This constraint seems to hold at 
all times for every mobile robot moving and cornering at 
low speed.  Therefore, the model uncertainty is assumed 
to be zero, and only uncertainties from sensing and 
control are considered in this study. 
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Degrees of sensory and control uncertainties vary 
from one robot system to another.  The degrees vary 
widely and depend heavily on types of sensors, actuators, 
and control algorithms used in the robot systems.  The 
degrees of sensory and control uncertainties for each 
robot system are treated as two separated numbers, where 
the sensory uncertainty may be represented in the form of 
uncertainty ellipsoid and the control uncertainty may be 
represented in the form of a percentage of steady-state 
error.  Each number may vary for different configurations 
or remain constant for the entire configuration space; 
however, its value must be bounded.  The degrees of 
uncertainties can be predetermined either by means of 
experiments or by means of simulations.  To generalize 
and simplify the analysis, the degrees of uncertainties 
from both sensory and control are combined and 
represented by a single number.  Although the sensory 
and control uncertainties may have different dimensions, 
the combining of the two uncertainties can be 
accomplished through the use of a feedback control law 
of a robot.  Let assume that the feedback control u in (1) 
is in the following form (assuming that all states are 
available): 

                   ( , , )c cu f x y θ= .                             (5) 
 
Let the estimated state from the sensor measurement 

be [ ]T
e c cx x x y yδ δ θ δθ= + + + , where δx, δy, and δθ 

are sensing errors in xc, yc, and θ due to sensory 
uncertainty.  Thus, the feedback control (5) with the 
estimated state becomes: 

 
      ( , ,c cu u f x x y y )δ δ θ δθ+ ∆ = + + +      (6) 

where, ∆u is the feedback control error due to 
sensory uncertainty.  

 
In addition, the feedback control (6) is also 

corrupted by the control error ∆c due to control 
uncertainty.  This control error is a scalar value and 
generally expressed in terms of a fraction of steady-state 
error to the desired set point.  Thus, the actual feedback 
control entering the system (1) is: 

 
(1 ) ( ) [ ( ) ]c u u u c u u u+ ∆ ⋅ + ∆ = + ∆ ⋅ + ∆ + ∆   (7) 

 
Notice that the expression in the closed bracket in 

the right hand side of equation (7) is an overall error in 
feedback control due to both sensory and control 
uncertainties.  Clearly, the overall error in feedback 
control is a function of the feedback control u itself—
both explicitly shown as u and inherently embedded in 
∆u.  This means that if the feedback control u and the 
uncertainties (δx, δy, δθ, and ∆c) are bounded, the overall 
error in feedback control is also bounded.  Consequently, 
the actual feedback control (7) is also bounded.  From 
equation (7), the overall error in feedback control (or the 
overall control error) can be rewritten in the form of (8) 
by factoring out u from ∆u and summing all coefficients 
of u together. 

[ ( ) ] erru c u u u u u+ ∆ ⋅ + ∆ + ∆ = + ∆ ⋅        (8) 
where, ∆err is the fraction of the overall control error 

to the feedback control u. 
 
In this form, the overall control error in equation (8) 

can be represented by the multiplication of the feedback 
control u with a single scalar value, ∆err, which we call 
“Coefficient of Overall Control Uncertainty”, or, in short, 
“Overall Control Uncertainty”.  This scalar value is a 
result of lumping together the consequences of both 
sensory and control uncertainties to feedback control.  
The overall control uncertainty conveniently and 
effectively represents the effect of both uncertainties as a 
whole to the closed-loop control of a mobile robot 
system.  The value of the overall control uncertainty is 
zero when there are no uncertainties, and it has a finite 
positive real value when there are bounded uncertainties 
presented in the robot system.  It is clear that the value of 
the overall control uncertainty also depends on the choice 
of feedback control (5); however, the discussion about 
choosing the most suitable (or optimal) feedback 
controller lies outside the scope of this study.   
 
4. Linear Control Uncertainty Field 

We have learned that the degree of uncertainties can 
be represented through a single number, the overall 
control uncertainty, and also learned that this number 
depends on the choice of feedback control given the same 
degree of uncertainties.  This may result in different paths 
planned for different controllers selected.  However, an 
optimal path for a given robot and environment should be 
invariant regardless of the choice of a robot feedback 
control.  Therefore, by slightly modifying the concept of 
overall control uncertainty, the notion of Linear Control 
Uncertainty (LCU) is developed.  The main idea is to 
determine (at each configuration in the environment) the 
maximum allowable overall control uncertainty instead 
and to use this number in defining the optimal path.  This 
way the optimal path stays unchanged with respect to 
different feedback control schemes since the value of 
LCU does not depend on types of control.  The LCU 
indicates the degree of combined uncertainties—both 
sensory and control uncertainties—allowed at any 
particular configuration in the robot workspace, such that 
the mobile robot can move from the current configuration 
for one time period without bumping into obstacles in the 
environment.  Before we give a formal definition of the 
LCU, some of the basic definitions used in robot motion 
planning will be introduced first [10].   

 
Definition 1  A robot A is a rigid object described 

as a compact (i.e. closed and bounded) subset of a 
Euclidean space W, called workspace, represented as 

NR , with N = 2 or 3.  Obstacles Bi , where i = 1, 2, …, 
N, are closed subsets of W.   
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Definition 2  A configuration q of a robot A is a 
specification of the position and orientation of the robot-
fixed coordinate frame {xy} with respect to the global 
coordinate frame {XY}.  The configuration space of A is 
the space C of all the possible configurations of A.  The 
subset of W occupied by A at configuration q is denoted 
by A(q).  A set of the interior points of set S is called the 
interior of S, and denoted by int(S). 

 
Definition 3  The obstacle Bi in W maps in C to the 

region CBi = { q∈C | A(q) ∩ Bi ≠ 0 }. 
CBi is called a C-obstacle. 
 
Definition 4  A free space is the subset of C defined 

by Cfree = C - CB
1

N

i=
∪ i. 

 
Definition 5  A contact space is the subset of C 

made of configurations at which A touches one or several 
obstacles without overlapping any, or mathematically 
defined as: 

Ccontact = {q∈C | A(q)∩ B
1

N

i=
∪ i ≠ 0 and int(A(q)) 

∩ int(B
1

N

i=
∪ i) = 0 }. 

Valid space is: Cvalid = Cfree ∪ Ccontact. 
   
 We are now ready to state the definition of the 

Linear Control Uncertainty (LCU).  
 
Definition 6 (Linear Control Uncertainty)  Let T 

be a constant time period, and T > 0.  Given a robot A 

moving in a workspace W∈ 2R  containing obstacles Bi, 
the Linear Control Uncertainty (LCU) of a 
configuration q∈Cfree is a nonnegative real number that 
perturbs a constant nominal control V (where V∈ R ) for 
the actual controls vr and vl in (2), as defined by the 
following equations 

 

         v L ,              (9) 
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such that the trajectory of system (1) starts from x(0) 

= q0 = q∈Cfree and ends at x(T) = qT ∈Cfree with x(T+) = 

qT+ ∈Ccontact, where T T .( , )+ ∈ ∞  

From the definition of LCU, there are two free 
variables.  One is the constant nominal control V, and the 

other is the constant time period T.  These two variables 
can affect the value of LCU of a free configuration in a 
given workspace.  For example, if one decreases V and T, 
the value of LCU will increase, or vice versa.  Although 
the selection of these two variables affects the value of 
LCU for all free configurations, the same effect applies to 
all free configurations.  Therefore, the topology of the 
Linear Control Uncertainty Field, which will be discussed 
next, of a free configuration space are invariant to the 
choices of V and T.  This means that the configuration 
possessing the higher LCU than its neighbors always 
possesses the higher LCU than its neighbors for different 
sets of V and T.  In general, we choose V to be the 
maximum or minimum velocity of the robot wheel, and 
choose T to be a sampling period.   

The reason to let V be the maximum or minimum 
velocity is to establish a lower bound for the value of 
LCU for any given T, so that the maximum allowable 
error in the closed-loop control system can be stated.  The 
reason to let T be a sampling period is that for many 
practical control schemes, especially digital ones, the 
value of the control input to dynamic systems is held 
constant for one sampling period such as a zero-order 
hold in digital control.  Further notice that the nominal 
control V is the same in both equations of vr and vl in (9), 
this is because, for determining LCU, the nominal 
trajectory or path of system (1) is chosen to be a short 
straight line.  Also notice that the LCU is assumed to be 
the same for both vr and vl , this makes sense because 
both vr and vl, at any instant, should experience the same 
magnitude of perturbation, but can be different in 
directions, shown as plus and minus signs in (9).  
Intuitively, the LCU, for an arbitrary configuration, with 
above suggested choices of V and T can be thought of as 
the maximum allowable degree of perturbation to the 
nominal straight path, such that a robot can move from 
that arbitrary configuration along the perturbed path for 
one sampling period in a workspace without touching 
obstacles in the workspace.   

The value of LCU at a particular configuration can 
be determined by two means: simulation and 
approximation.  Here, we will consider the simulation 
means while the approximation means will be discussed 
in another paper devoted to an extension of the LCU.  
Given a robot, a robot workspace, obstacles, V, and T, the 
simulation iterates for each particular configuration by 
increasing LCU (starting from zero), calculating 
perturbed controls from equation (9), integrating system 
equation (1) forward in time for T seconds, and checking 
for a collision between a robot and obstacles.  If there is 
no collision, the LCU is increased and another iteration is 
carried out.  The simulation terminates when collision 
occurs, and the LCU just before the collision is declared 
as the LCU of that particular configuration.   

Two types of collision detection algorithms have 
been used in this study.  One is based on a direct 
implementation of linear algebra by determining all 
possible intersections between each pair of the edges of 
the robot and obstacles.  The other is based on the 
“Separating Axis Theorem” [11].  The linear algebra-
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based algorithm uses less computation time than the 
separating-axis-theorem-based algorithm does when the 
obstacles in the problem are concave and must be 
decomposed into smaller convex obstacles for the 
separating-axis-theorem-based algorithm to work.       

The concept of a LCU is directly applied to the 
motion planning problem of nonholonomic mobile 
robots.  The idea is to find a path that connects given 
initial and goal configurations, while all of the 
configurations on the path possess high values of LCUs.  
To be able to determine the LCUs along a path, the path 
must be approximated by a series of discrete 
configurations.  Before searching for an optimal path in a 
discrete configuration space, the LCUs at each discrete 
configuration q in a free space Cfree must be computed 
first to create a “Linear Control Uncertainty Field 
(LCUF)”, and the search can be conducted afterward.  
The definition of this field is as follows: 

 
Definition 7  Given a robot A moving in a 

workspace W∈ 2R  containing obstacles Bi, a Linear 
Control Uncertainty Field (LCUF) is a field of LCU for 
all q∈C

)

free.     
 
An example of a LCUF is presented in Figure 2.  

The figure depicts a graphical representation of a LCUF 
of a rectangular mobile robot (shown on the top of the 
figure) moving in a given workspace, a 90-degree turn 
passage.  The magnitudes of the vectors in the figure 
show values of LCU at the points from which the vectors 
emanate.  The directions of the vectors represent heading 
angles or orientations of the mobile robot at those points.  
One can notice that the value of LCU is highly sensitive 
to changes in the orientations of mobile robot as the 
magnitudes of the vectors at the same point vary greatly 
when there are small changes in orientations.  This 
characteristic of the LCU poses a difficulty in searching 
for an optimal path through the LCUF since the values of 
a cost function of slightly different candidate paths can be 
considerably different, which gives rise to a highly 
nonlinear optimization problem.  Nevertheless, the 
method used in the next section can cope with this 
difficulty.    

 

 
    Figure 2. A Linear Control Uncertainty Field (LCUF).  

4.1 Optimal Path Searching Method 
For an optimal path, the system dynamic model (1) 

must be satisfied at all times.  Additionally, the optimal 
path—connecting an initial configuration and a goal 
configuration—of the system must minimize a given cost 
function.  In this setting, the nonholonomic motion 
planning problem can be converted into an optimal 
control problem.  When one determines an optimal 
control, v* and ω*, that steer the system (1) from a given 
initial state to a given terminal state such that a given cost 
function is minimized.  This way it is guaranteed that the 
resultant path (or trajectory) always satisfy the 
nonholonomic constraint.   

One of the popular techniques used in optimal 
control problems is to transform an optimal control 
problem into a standard optimization problem, and then 
use well-established tools in optimization theory to solve 
the optimal control problem.  This technique uses 
approximation-and-optimization approach, which is 
widely accepted, and also used in commercial codes such 
as POST (Program to Optimize Simulated Trajectories) 
written by Lockheed Martin Astronautics and NASA 
[12].   

A motion planning problem is a constrained 
optimization problem by nature due to constraints in both 
the state of the system (xc, yc, and θ) and the control of 
the system (vr and vl).  The constraint of the state comes 
directly from obstacles in a workspace, while the 
constraint of the control arises from the fact that the 
control is bounded.  To convert the constrained 
optimization problem to an unconstrained one, we utilize 
the concept of penalty functions, where we penalize the 
state and control constraint violation (represented by 
terms col and β(u), respectively, in cost function(10)).  In 
addition, to make sure that the final configuration of the 
mobile robot terminates at the goal configuration, the cost 
function also includes a quadratic function of the 
discrepancy between the final and goal configurations, 

2( N gx x− .  Ultimately, the most desired path should 
comprise configurations possessing the greatest LCUs.  
With all these quantities, the cost function can be 
explicitly written as follows: 

 
2( ) min ( ) { ( ) ( ) },

[1,2,..., ]
i N gF u LCU x x x u col

i N

α β= − + − + +

∈
   (10) 

      where, LCU(xi) = LCU at configuration i.                       
                           α  = constant positive weight.  A                    xN = final configuration of the robot.            

                    xg = goal configuration of the robot. 
    β(u) = 0  if no control constraint violation occurs. 
            = 1000 ⋅ ( u

∞
)2   if control violation occurs 

      col = 0  if no collision occurs. 
            = 1000 ⋅ min LCU(xi)   if collision occurs.
 
The cost function F is a function of control u, which 

can be easily transformed into a series of configurations 
xi (state xi and configuration qi are equivalent and can be 
used interchangeably) by simulating the system (1) to 
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impose the nonholonomic constraint.  The LCU of each xi 
is varied along the path produced by the control u.  The 
minimum one, min LCU(xi), is selected and used in the 
cost function as a minimum LCU of that path, min LCU.  
In this way, we can guarantee that the mobile robot with 
control uncertainty lower than this minimum value is able 
to traverse along the path safely so long as the mobile 
robot follows the path accurately.  The weight, α, is used 
for controlling the characteristic of the end point xN of an 
optimal path, for example, one can set α with a large 
positive number to find the optimal path which ends 
closer to the given goal configuration xg.  However, α 
must be carefully chosen such that the term 

2( N g )x xα − will not dominate the term min LCU(xi). 
     The other form of cost function that we also 

consider is an integral form, which is the most common 
in typical optimal control problems.  That cost function 
can be explicitly written as follows: 

 
2

1

( ) ( ) { ( ) ( ) },

[1, 2,..., ]

N

i N g
i

G u LCU x x x u col

i N

α β
=

= − + − + +

∈

∑     (11) 

          where, ∑ = the sum of LCUs at each   
1

( )
N

i
i

LCU x
=

                                         configuration along a path. 
                col = 0   if no collision occurs. 

             = 1000 ⋅
1

( )
N

i
i

LCU x
=
∑    if collision occurs. 

 
The differences between the two cost functions, (10) 

and (11), are only the first and the last terms of both cost 
functions.  However, using the penalty functions such as 
col and β(u) in (10) and (11) introduces a discontinuity to 
the cost function.  The well-known direct search methods 
called the “Nelder-Mead simplex method” [13] is 
selected as the optimization method because it is a very 
effective direct search method for a multidimensional 
unconstrained nonlinear minimization problem having 
non-smooth cost function.   

  
5. Results and Discussions 

The generalized rectangular robot and the 
workspace, as shown in Figure 2, are chosen to be a case 
study.  The sampling period T and the maximum wheel 
velocity V of the robot for the LCU calculation are 0.5 
second and 1 unit/second, respectively.  The goal is to 
find two optimal paths that minimize the cost function 
(10) and (11) with the same α = 0.01, and then compare 
the two paths.  The controls, v and ω, are bounded within 
[-1,1] unit/second and [-1,1] rad/second, respectively.  
Both controls are approximated by two piecewise 
constant functions, and each one is uniformly divided 
into 60 equal intervals, N = 60.  Hence, we have a total of 
120 variables to optimize.  The final time is specified to 
be 60 seconds, Tf = 60.  Given initial and goal 
configurations are [-25,11,-π /4]T and [25,11,π/4]T, 
respectively.   

The search program ran twice (one for each cost 
function) on a personal computer with a 1.7 GHz 
processor, and took nearly 96 hours to search for the 
optimal path for each cost function.  The minimum LCU 
path and the integral LCU path in Figure 3 correspond to 
the cost function (10) and (11), respectively. The 
minimum value of the LCUs along the minimum LCU 
path is 2.1 or 210%, which means that the robot must 
have overall control uncertainty in its feedback control 
less than or equal to 210% to traverse along the path 
safely with a linear velocity less than 1 unit/second, 
provided that the robot follows the path accurately.  The 
minimum value of the LCUs along the integral LCU path, 
on the other hand, is only 1.6 or 160%.   

 
 

 

yc 
(unit) 

 
xc (unit) 

Figure 3.  Optimal paths for different cost functions. 
 
6. Conclusion 

The notion of “Linear Control Uncertainty (LCU)” 
is proposed as a measurement, for each configuration in 
the configuration space, indicating how much uncertainty 
tolerance that the configuration has compared to its 
neighbor.  A field of LCUs in a workspace, which we 
called the “Linear Control Uncertainty Field (LCUF)”, 
can be searched by the proposed search method for an 
optimal path lying within the workspace.  This search 
method, called  “LCUF-based motion planning”, is based 
on the approximation-and-optimization approach, which 
is often used in solving for optimal trajectories in optimal 
control problems.  The search method yields a global 
optimal path with respect to the minimum LCU cost 
function and the integral LCU cost function.   

The minimum LCU cost function yields better 
results, and, therefore, is favorable over the integral LCU 
cost function in this study.  The minimum LCU of the 
optimal path can be used as an estimated number to 
determine how much control uncertainty is allowed in a 
robot system.  In term of the applications of the proposed 
method, although we have only shown the application of 
our proposed motion planning method to solve a two-
dimensional nonholonomic motion planning problem, the 
method, in fact, can be readily extended to solve a three-
dimensional one. 
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