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Abstract

High class kinematic groups are commonly present as the
consisting components of complex industrial mechanisms.
Their geometric and kinematic description can not be done
in a standard way. Due to the extensive use of computers,
development of efficient analytical methods gains more
importance. In this paper a new method for describing this
class of mechanisms is proposed. The basic idea of this
method is to decompose the high class kinematic group to
second class kinematic groups. System of equations are
obtained from the kinematic constrains in the linkage. The
Banach’s principle of contraction is used and position of
the mechanism is obtained through fixed point iteration
method. This method is very efficient and quickly gives
accurate solutions concerning the position of mechanism.
Keywords: High class kinematic group, Position analysis

1. Introduction

In search for mechanism that can fulfill certain task
it is interesting to examine those with kinematic groups
of higher classes because they can offer multiple
solutions. Existence of multiple solutions means that high
class kinematic group and therefore, the whole
mechanism, can be assembled in various configurations
which can be further optimized.

As the position analysis is performed on the level of
kinematic groups, the complexity of the problem depends
on the structure of the mechanism being analyzed,
namely on the class of the kinematic groups creating it.

For the second class groups of the different forms
the analytical relations determining positions of the
moving links have been derived in the explicit form [1].

Determination of the links position in the higher
class groups is more complex, which results from the
complex structure of such mechanism. Most of the
methods used so far lead to a system of highly nonlinear
equations which makes finding the explicate solution
impossible. Numerical methods are commonly applied
for solving this system of equations [2]. Application of
these methods has many problems:

e For the method convergence, the starting
values of variables must be close to exact
solutions which require sketching of system
configuration.

e Absence of convergence exists when system
is very close to singular positions.

e Non-linear equations always have multiple
solutions, number of which is unknown.

Method presented in this paper can easily overcome
mentioned problems. The basic idea of this method is to
decompose the high class kinematic group to second class
kinematic groups (dyads). System of equations are
obtained from the kinematic constrains in the linkage.
The Banach’s principle of contraction is used and
position of the mechanism is obtained through fixed point
iteration method [3], [4].

2. Kinematic analysis of the complex mechanism
Well known Chebyshev rowing mechanism is
presented in Figure 1.
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Figure 1. Complex mechanism

Position (and later velocity and acceleration) of the
tip K has to be determined. Position angle ¢, as well as
angular velocity and acceleration of the input link 2 are
known. Since velocity and acceleration analysis yield to
linear equation problem, prime concern is going to be
mechanism position analysis, namely determination of its
initial position. With known initial position mechanism
motion simulation is easily solved as subsequent array of
finite displacement problems.

Mechanism shown in Figure 1. is a complex
mechanism consisting of three kinematic groups (Figure
2.): the first class kinematic group - input link 2, the
second class kinematic group — links 3 and 4 and the third
class kinematic group — links 5, 6, 7 and 8.

Figure 2. Mechanism constitutive kinematic groups



Kinematic analysis will be performed in exactly the
same order as the mechanism assembly.
First, position of point A on the first class kinematic
group will be calculated:
Xa = Xo + OACOs ¢, )
Ya=VYo +O_Asin¢)2
Next, second class kinematic group (links 3 and 4)
is added to link 2 at the point A thus forming fourbar
mechanism OABC (Figure 3.)

Figure 3. Fourbar mechanism

Analytical relations determining positions of the
moving links for the second class group can be derived in
the explicit form. After the calculations position of points
B and D will be determined.

At the end, the third class kinematic group is
connected to the fourbar mechanism at the point D. Now,
with known position of D, H and I, position analysis is
performed using fixed point iteration method and all
relevant kinematic parameters are calculated .

Before solving the particular example, theoretical
concepts for kinematic analysis of second and third class
kinematic groups will be presented.

2.1 Kinematic analysis of the second class kinematic
group

General form of the dyad consisting of two links
connected by rotational joint is presented in Figure 4.
External joints A and A, are of the rotational type so
this type of dyad is called RRR type. Positions of the
external joints A, and A, are known, while position of
the middle joint A; has to be determined.

Figure 4. Dyad (type RRR)

Vector equation describing dyad is:
Fap +1 =Tpp +15 =3 2)
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New vector is introduced:

ARy =Tpp —Tp 3)
where:
@2 =(xp2 — X1 )* +(ya2 -y ) “)
PaLA2 = arctan(—yA2 L J (5)
XA2 —XA1
Now angle a can be obtained:
2 A p’ 2

o = +arccos) L Afe —T (6)

2r1 A]_AZ

Position angle of link 1 is:
P =pumta (7
Sign * represents two possible configurations of dyad

assembly ( Figure 4. - full and dotted line). Now, position
of joint A; can be obtained as:

Xp3 = Xp1 + 1 COS@q

. ®)
Yaz =Yar+hsing
Position angle of link 2 is:
@, = arctan(—yA3 — yAZJ )
XA3 ~XA2
2.2 Kinematic analysis of the third class kinematic

group

General case of the third class kinematic group with
vectors describing its position is presented in Figure 5.

It is of the RR-RR-RR type - central link 4 is
connected by rotational joints with binary links 1, 2, and
3, which are furthermore, connected to the rest of the
mechanism by the rotational joints also. Points A, B and
C are called internal, and D, E and F external ones.
Positions of all external points are known while positions
of the internal points A, B and C have to be determined.

i)

Figure 5. Vectors describing position of the third class
kinematic group

In order to perform position analysis the third class
kinematic group will be decomposed into three second
class kinematic groups which will be analyzed using
procedure described in 2.1.



STEP 1 — start, assuming I (Flo ), o1 (¢1°),
Fa(FA)
First, value for angle ¢, is assumed. Position of point A
can be then calculated as:
=y +0 (10)
STEP 2 — forming first dyad, obtaining FBO
Now, a dyad of type RRR (links BE and BA) is formed:
Tp+Ty =Tg+T, =03 (11)
Using equations (2)-(9) position of point B is obtained.
Since angle @, has two completely distinctive solutions
there will be also two solutions for both ¢4, and fy . One

set (92, @41, Tg ) has to be chosen in order to continue.

STEP 3— forming second dyad, obtaining FCO
Links CF and CB form a RRR dyad:
fg +Tyy =Fp +T3 =T¢ (12)
Using equations (2)-(9) position of point C is obtained.
Again, the angle @3 has two distinctive solutions leading
to two solutions for both @4, and I . One set (3, @42,
fc ) has to be chosen in order to continue.
STEP 4 — forming third dyad, obtaining Fll , 01, FAl
Now, a dyad of type RRR (links AC and AD) is formed:
fo +Tyg =Tp +01; =Ty (13)
Using equations (2)-(9) position of point A is obtained.
One solution for @, i.e. @43 and T, has to be chosen. With
chosen ¢, new value Fll for vector F; is obtained.
Difference between new and starting value is an error vector:
art =) -t (14)
This end the first iteration (Figure 6.).

»

Figure 6. First iteration

Second iteration is initiated with vector Fy', in order

to obtain F?(¢;% FZ). The succeeding iterations are

done in the previously shown way. The procedure is
interrupted when the following condition is met:
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‘Aﬂ"

<& (15)

Using this method, error vector is significantly
reduced in each iteration - vector F; converges towards

its accurate value. In most cases only few iterations were
necessary for the condition (15) to be met.

All three dyads, which this third class kinematic
group is consisted of, have two solutions (assembly
configurations) (Egs. (11)-(13)), so there are, in total, eight
different vector contours that can describe the mechanism.
Vector contour formed in the presented way has a single
solution for each kinematic parameter, so problem of the
number of possible solutions, i.e. possible mechanism
configurations, comes down to determination of the
number of different vector contours — in this case there
exist eight of them. Real solutions are determined by
examining, one by one, all of the eight contours.

Through Egs. (10)-(14), indirectly,
function is formed:

following

o = f(o) (16)

Before implementing fixed point iteration method to

solve Eq. (16) for ¢,, necessary conditions for method

convergence have to be investigated. Analytical form of

f(¢1) can be extremly complex, so combination of

numerical and graphical methods are used and solution is
found visually (Figure 7.).
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Figure 7. Procedure for checking fixed point iteration
method convergence necessary conditions

Function f(g,) is continuous in [300°,350°], for
300° < ¢ <350°=300° < f(p;)<350° , max|f'(p ) <1

in the interval so there exist a unique solution @; = o of
(16) in [300°,350°], and for any initial guess in
[300°,350°] iteration procedure will converge to o
(Figure 7. corresponds to Solution 2.4 of the example.)
Now, fixed point iteration procedure is invoked, and
solution for ¢, and thereby for all other kinematic




parameters of the third class kinematic group, can be
calculated with prescribed accuracy.

After repeating the complete procedure — once for
each vector contour all possible real solutions for ¢, and,
thus, all possible third class assembly configuration are
obtained.

3. Example

Data for the complex mechanism (Figure 1.) are:
0(00) DE=130mm  &£G _75mm
C(1100) EF =100mm  H(190,70)
AB=160mm FH =55mm  1(280,0)
BC=130mm FG=8mm  EJ=130mm
BD=120mm Gl =110mm  JK =130mm
/EJK =90° ¢ =180°

First, position of point A is calculated (Eq. (1)):
Xp = 0 Ya = -85 mm

Next, using Eqs. (2) —(9), where points A, B and C
are considered as A;, A, and Aj; respectively, two
possible solutions for point B, ie. two assembly
configurations of the four bar mechanism OABC are
obtained (Figure 8.).

Position of point D is calculated as it is going to be
an input for the next step — position analysis of the third
class kinematic group:

Xp = Xa + ADcos ¢,

_ (16)
Yp =Y +ADcos ¢,

D

Figure 8. Possible assembly configurations of the four
bar mechanism OABC

Solution 2:
ZAB =g, =4151°

ZCB =125.34°
B(34.81,106.05 )mm B(34.81,-106.05 )mm
D(124.66 ,185.58 )mm D(124.66 ,~185.58 )mm

Position of points D (from the first phase) and H and
I (connections to the ground link) are known. Now,
following the procedure described in 2.2. position
analysis of the third class kinematic group is performed.
Positions of internal joints E, F and G as well as all links
position angles are determined.

With angle ¢, determined position of the tip point
K is easily obtained as:

Solution 1:
ZAB =, =318.49°
/CB = 234.66°
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Xy = DJ cos g, + JK cos(¢py +270°)

yk = DJ sin g, + JK sin(¢p, +270°)

Procedure has to be executed twice — first time for

four bar mechanism Solution 1. and next for four bar
mechanism Solution 2.

For the first case (Figure 9.) there exist two real

solutions, while for the second case there are four of them
(Figure 10.).

(17)

K

Figure 9. Possible assembly configurations for the third
class kinematic group (four bar mechanism Solution 1.)

Solution 1.2:

ZDE = ¢, =90.10°
Z1G =219.46°
ZHF = 272.29°
E(121.44,-55.62 )mm

F(192.20,15.04 )mm
G(195.071,-69.91)mm

Solution 1.1:
ZDE = ¢, =98.32°
ZI1G = 204.69°

ZHF =221.97°
E(105.87 -56.95 )mm
F(149.11,33.21 )mm
G(180.06 ~45.95)mm




Figure 10. Possible assembly configurations for the third
class kinematic group (four bar mechanism Solution 2.)

Solution 2.1:

ZDE = ¢, = 345.57°
Z1G =74.74°

ZHF =342.28°
E(250.56,153.18 )mm

F(242.41,53.32)mm
G(308.96,106.12 )mm

Solution 2.3:
£DE = g, = 358.75°
ZI1G =101.40°

ZHF =106.27°

E(254.63,182.74 )mm
F(174.58,122.79 )mm
G(258.26,107.83 )mm

Solution 2.2:

ZDE = ¢, =82.33°
Z1G =159.30°
ZHF =101.68°
E(104.36,57.16 )mm

F(178.86,123.86 )mm
G(177.10,38.88 )mm

Solution 2.4:
ZDE = ¢, = 275.97°
ZI1G =185.92°

ZHF =328.89°
E(138.18,56.29 )mm
F(237.09,41.59)mm
G(170.59,-11.35 )mm
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Determination of the links position in the higher
class groups is more complex, and methods used so far
encountered several serious problems.

Complete mechanism configurations are obtained as
combinations of four bar mechanism solutions and the
corresponding third class group solutions (Figure 11.):

Solution 1. + Solution 1.1 = Complete mechanism 1.
Solution 1. + Solution 1.1 = Complete mechanism 2.
Solution 2. + Solution 2.1 = Complete mechanism 3.
Solution 2. + Solution 2.1 = Complete mechanism 4.
Solution 2. + Solution 2.2 = Complete mechanism 5.
Solution 2. + Solution 2.3 = Complete mechanism 6.

At the end, it can be concluded that there exist, in
total, six possible solutions for the complete mechanism
position analysis i.e. there are six possible mechanism
assembly configurations.

4. Conclusion

Kinematic analysis, mainly the position analysis of
the mechanisms with high class kinematic groups
presents a serious problem. The aim of the position
analysis is to determine all possible configuration of the
mechanism, for a given position of its input link. When
the position is determined, then the analysis of velocities
and accelerations becomes very simple.

In this paper a method for describing this class of
mechanisms is proposed. Mechanism is decomposed to
its constitutive parts (kinematic groups). Kinematic
analysis is then performed for each kinematic group
separately, strictly following the order of the mechanism
assembly. Complete mechanism configurations are
obtained as combinations of the corresponding solutions.

For the second class kinematic groups of the
different forms the analytical relations determining
positions of the moving links have been derived in the
explicit form.




Figure 11. All possible assembly configurations of the
complete mechanism

Method for position analysis presented in this paper
is general and very efficient and easily overcomes
problems met when using typical numerical methods.

Its basic idea is to decompose the high class
kinematic group to second class kinematic groups.
System of equations are obtained systematically from the
kinematic constrains in the linkage. The Banach’s
principle of contraction is used and position of the
mechanism is obtained through fixed point iteration
method. Accurate solutions concerning the position of
mechanism are obtained very quickly - in only few
iterations.
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