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Abstract 
High class kinematic groups are commonly present as the 
consisting components of complex industrial mechanisms. 
Their geometric and kinematic description can not be done 
in a standard way.  Due to the extensive use of computers, 
development of efficient analytical methods gains more 
importance. In this paper a new method for describing this 
class of mechanisms is proposed. The basic idea of this 
method is to decompose the high class kinematic group to 
second class kinematic groups. System of equations are 
obtained from the kinematic constrains in the linkage. The 
Banach’s principle of contraction is used and position of 
the mechanism is obtained through fixed point iteration 
method. This method is very efficient and quickly gives 
accurate solutions concerning the position of mechanism. 
Keywords: High class kinematic group, Position analysis 

 
1. Introduction 

In search for mechanism that can fulfill certain task 
it is interesting to examine those with kinematic groups 
of higher classes because they can offer multiple 
solutions. Existence of multiple solutions means that high 
class kinematic group and therefore, the whole 
mechanism, can be assembled in various configurations 
which can be further optimized. 

As the position analysis is performed on the level of 
kinematic groups, the complexity of the problem depends 
on the structure of the mechanism being analyzed, 
namely on the class of the kinematic groups creating it. 

For the second class groups of the different forms 
the analytical relations determining positions of the 
moving links have been derived in the explicit form [1].  

Determination of the links position in the higher 
class groups is more complex, which results from the 
complex structure of such mechanism. Most of the 
methods used so far lead to a system of highly nonlinear 
equations which makes finding the explicate solution 
impossible. Numerical methods are commonly applied 
for solving this system of equations [2]. Application of 
these methods has many problems: 

• For the method convergence, the starting 
values of variables must be close to exact 
solutions which require sketching of system 
configuration. 

• Absence of convergence exists when system 
is very close to singular positions. 

• Non-linear equations always have multiple 
solutions, number of which is unknown. 

Method presented in this paper can easily overcome 
mentioned problems. The basic idea of this method is to 
decompose the high class kinematic group to second class 
kinematic groups (dyads). System of equations are 
obtained from the kinematic constrains in the linkage. 
The Banach’s principle of contraction is used and 
position of the mechanism is obtained through fixed point 
iteration method [3], [4].  
 
2. Kinematic analysis of the complex mechanism 

Well known Chebyshev rowing mechanism is 
presented in Figure 1. 
 

 
 

Figure 1. Complex mechanism 
 

Position (and later velocity and acceleration) of the 
tip K has to be determined. Position angle ϕ, as well as 
angular velocity and acceleration of the input link 2 are 
known. Since velocity and acceleration analysis yield to 
linear equation problem, prime concern is going to be 
mechanism position analysis, namely determination of its 
initial position. With known initial position mechanism 
motion simulation is easily solved as subsequent array of 
finite displacement problems.  

Mechanism shown in Figure 1. is a complex 
mechanism consisting of three kinematic groups (Figure 
2.): the first class kinematic group - input link 2, the 
second class kinematic group – links 3 and 4 and the third 
class kinematic group – links 5, 6, 7 and 8.  

 

 
 

Figure 2. Mechanism constitutive kinematic groups 
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Kinematic analysis will be performed in exactly the 
same order as the mechanism assembly.  

First, position of point A on the first class kinematic 
group will be calculated:  
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Next, second class kinematic group (links 3 and 4) 
is added to link 2 at the point A thus forming fourbar 
mechanism OABC (Figure 3.) 

 
 

Figure 3.  Fourbar mechanism 
 

Analytical relations determining positions of the 
moving links for the second class group can be derived in 
the explicit form. After the calculations position of points 
B and D will be determined. 

At the end, the third class kinematic group is 
connected to the fourbar mechanism at the point D. Now, 
with known position of D, H and I, position analysis is 
performed using fixed point iteration method and all 
relevant kinematic parameters are calculated .  

Before solving the particular example, theoretical 
concepts for kinematic analysis of second and third class 
kinematic groups will be presented. 
2.1 Kinematic analysis of the second class kinematic 
group  

General form of the dyad consisting of two links 
connected by rotational joint is presented in Figure 4. 
External joints AB1B and AB2B are of the rotational type so 
this type of dyad is called RRR type. Positions of the 
external joints AB1B and AB2B are known, while position of 
the middle joint AB3B has to be determined.  

 

 
 

Figure 4.  Dyad  (type RRR) 
 

Vector equation describing dyad is: 
                       3A22A11A rrrrr

rrrrr
=+=+    (2) 

New vector is introduced: 
                          1A2A21 rrAA
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where: 
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Now angle α can be obtained: 
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Position angle of link 1 is: 
                                αϕϕ ±= 211 AA    (7) 
Sign ±  represents two possible configurations of  dyad 
assembly ( Figure 4. - full and dotted line). Now, position 
of joint AB3B can be obtained as: 
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Position angle of link 2 is: 
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2.2 Kinematic analysis of the third class kinematic 
group  

General case of the third class kinematic group with 
vectors describing its position is presented in Figure 5.  

It is of the RR-RR-RR type - central link 4 is 
connected by rotational joints with binary links 1, 2, and 
3, which are furthermore, connected to the rest of the 
mechanism by the rotational joints also. Points A, B and 
C are called internal, and D, E and F external ones. 
Positions of all external points are known while positions 
of the internal points A, B and C have to be determined. 

 

 
 

Figure 5. Vectors describing position of the third class 
kinematic group 

 
In order to perform position analysis the third class 

kinematic group will be decomposed into three second 
class kinematic groups which will be analyzed using 
procedure described in 2.1.  
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STEP 1 – start, assuming  (1r
r 0
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), ϕB1  B(ϕB1PB

0
P), 

(Ar
r 0

Ar
r

) 
First, value for angle ϕB1B is assumed. Position of point A 
can be then calculated as: 
                                  1DA rrr

rrr
+=                 (10) 

STEP 2 – forming first dyad, obtaining 0
Br
r

 
Now, a dyad of type RRR (links BE and BA) is formed: 
                         B2E41A rrrrr

rrrrr
=+=+                (11) 

Using equations (2)-(9) position of point B is obtained. 
Since angle ϕB2B has two completely distinctive solutions 
there will be also two solutions for both ϕB41B and Br

r
. One 

set (ϕB2B, ϕB41B, ) has to be chosen in order to continue. Br
r

STEP 3– forming second dyad, obtaining 0
Cr
r

 
Links CF and CB form a RRR dyad: 
                        C3F42B rrrrr

rrrrr
=+=+                (12) 

Using equations (2)-(9) position of point C is obtained. 
Again, the angle ϕB3B has two distinctive solutions leading 
to two solutions for both ϕB42 Band . One set (ϕB3B, ϕB42B, 

) has to be chosen in order to continue. 
Cr
r

Cr
r

STEP 4 – forming third dyad, obtaining 1
1r
r

, ϕB1PB

1
P, 1

Ar
r

 
Now, a dyad of type RRR (links AC and AD)  is formed: 
                        A1D43C rrrrr

rrrrr
=+=+                          (13) 

Using equations (2)-(9) position of point A is obtained. 
One solution for ϕB1B i.e. ϕB43 Band  has to be chosen. With 

chosen ϕB1B, new value 
Ar
r

1
1r
r

 for vector  is obtained. 
Difference between new and starting value is an error vector: 

1r
r
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This end the first iteration (Figure 6.).  
 

 
 

Figure 6.  First iteration 
 

Second iteration is initiated with vector 1
1r
r

, in order 

to obtain 2
1r
r

(ϕB1PB

2
P, 2

Ar
r

). The succeeding iterations are 
done in the previously shown way. The procedure is 
interrupted when the following condition is met: 

                                         εΔ <n
1r
r

                             (15) 

Using this method, error vector is significantly 
reduced in each iteration - vector  converges towards 
its accurate value. In most cases only few iterations  were 
necessary for the condition (15) to be met. 

1r
r

All three dyads, which this third class kinematic 
group is consisted of, have two solutions (assembly 
configurations) (Eqs. (11)-(13)), so there are, in total,  eight 
different vector contours that can describe the mechanism. 
Vector contour formed in the presented way has a single 
solution for each kinematic parameter, so problem of the 
number of possible solutions, i.e. possible mechanism 
configurations, comes down to determination of the 
number of different vector contours – in this case there 
exist eight of them. Real solutions are determined by 
examining, one by one, all of the eight contours.  

Through Eqs. (10)-(14), indirectly, following 
function  is formed: 

                             ( )11 ϕϕ f=                               (16) 
Before implementing fixed point iteration method to 

solve Eq. (16) for ϕB1B, necessary conditions for method 
convergence have to be investigated. Analytical form of 

( )1ϕf  can be extremly complex, so combination of 
numerical and graphical methods are used and solution is 
found visually (Figure 7.). 

 

 
 

Figure 7.  Procedure for checking fixed point iteration 
method convergence necessary conditions  

 
Function ( )1ϕf  is continuous in [300°,350°], for 

( ) °<<°⇒°<<° 350300350300 11 ϕϕ f , max ( ) 1' 1 <ϕf  
in the interval  so there exist a unique solution ϕB1 B=B BαB Bof 
(16) in [300°,350°], and for any initial guess in 
[300°,350°] iteration procedure will converge to α. 
(Figure 7. corresponds to Solution 2.4 of  the example.) 

Now, fixed point iteration procedure is invoked, and 
solution for ϕB1 Band  thereby for all other kinematic 
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parameters of the third class kinematic group, can be 
calculated with prescribed accuracy. 

After repeating the complete procedure – once for 
each vector contour all possible real solutions for ϕB1 Band, 
thus, all possible third class assembly configuration are 
obtained. 

 
3. Example 

Data for the complex mechanism (Figure 1.) are: 
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°=∠ 90EJK  °= 180ϕ  
First, position of point A is calculated (Eq. (1)): 

mm85y0x AA −==  
Next, using  Eqs.  (2) – (9), where points A, B and C 

are considered as AB1B, AB2B and AB3B respectively, two 
possible solutions for point B, i.e. two assembly 
configurations of  the four bar mechanism OABC are 
obtained (Figure 8.). 

Position of point D is calculated as it is going to be 
an input for the next step – position analysis of the third 
class kinematic group: 
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Figure 8. Possible assembly configurations of  the four 
bar mechanism OABC 

 
Solution 1:     Solution 2: 

( )
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°=∠

°==∠ ϕ
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−
−
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Position of points D (from the first phase) and H and 
I (connections to the ground link) are known. Now, 
following the procedure described in 2.2. position 
analysis of the third class kinematic group is performed. 
Positions of internal joints E, F and G as well as all links 
position angles are determined.  

With angle ϕB2B determined  position of the tip point 
K is easily obtained as: 
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°++=
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ϕϕ
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            (17) 

Procedure has to be executed twice – first time for 
four bar mechanism Solution 1. and next for four bar 
mechanism Solution 2.  

For the first case (Figure 9.) there exist two real 
solutions, while for the second case there are four of them 
(Figure 10.). 

 

 
 

Figure 9. Possible assembly configurations for the third 
class kinematic group (four bar mechanism Solution 1.) 

 
Solution 1.1:  Solution 1.2: 
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Figure 10. Possible assembly configurations for the third 
class kinematic group (four bar mechanism Solution 2.) 

 
Solution 2.1:  Solution 2.2: 

( )
( )
( )mm12.106,96.308G
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Solution 2.3:  Solution 2.4: 

( )
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Complete mechanism configurations are obtained as 

combinations of four bar mechanism solutions and the 
corresponding third class group solutions (Figure 11.): 

 
Solution 1. + Solution 1.1 = Complete mechanism 1. 
Solution 1. + Solution 1.1 = Complete mechanism 2. 
Solution 2. + Solution 2.1 = Complete mechanism 3. 
Solution 2. + Solution 2.1 = Complete mechanism 4. 
Solution 2. + Solution 2.2 = Complete mechanism 5. 
Solution 2. + Solution 2.3 = Complete mechanism 6. 
 
At the end, it can be concluded that there exist, in 

total, six possible solutions for the complete mechanism 
position analysis i.e. there are six possible mechanism 
assembly configurations.  

 
4. Conclusion 

Kinematic analysis, mainly the position analysis of 
the mechanisms with high class kinematic groups 
presents a serious problem. The aim of the position 
analysis is to determine all possible configuration of the 
mechanism, for a given position of its input link. When 
the position is determined, then the analysis of velocities 
and accelerations becomes very simple. 

In this paper a method for describing this class of 
mechanisms is proposed. Mechanism is decomposed to 
its constitutive parts (kinematic groups). Kinematic 
analysis is then performed for each kinematic group 
separately, strictly following the order of the mechanism 
assembly. Complete mechanism configurations are 
obtained as combinations of the corresponding solutions.  

For the second class kinematic groups of the 
different forms the analytical relations determining 
positions of the moving links have been derived in the 
explicit form.  

Determination of the links position in the higher 
class groups is more complex, and methods used so far 
encountered several serious problems.  
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Figure 11. All possible assembly configurations of the 

complete mechanism 
 
Method for position analysis presented in this paper 

is general and very efficient and easily overcomes 
problems met when using typical numerical methods. 

Its basic idea is to decompose the high class 
kinematic group to second class kinematic groups. 
System of equations are obtained systematically from the 
kinematic constrains in the linkage. The Banach’s 
principle of contraction is used and position of the 
mechanism is obtained through fixed point iteration 
method.  Accurate solutions concerning the position of 
mechanism are obtained very quickly - in only few 
iterations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
References 
[1] C. H. Suh, C. W. Radcliffe, Kinematics and 

Mechanism Design, John Wiley &Sons, 1987.  
[2] C. W. Radcliffe, M. Ž. Zlokolica, L. J. Cvetićanin, 

“Kinematic Analysis of Assur Groups of the Third 
Class by Numerical Solution of Constraint 
Equations”, TTM Seventh World Congress, Sevilla, 
1987., pp. 169-171. 

[3] O. Hadžić, Fixed Point Theory Basics (in Serbian), 
Institute for mathematics, Novi Sad, 1978. 

[4] M. V. Čavić, M. Ž. Zlokolica, M. D. Kostić, “On 
Kinematical Description of Kinematical Groups as 
Compound Part of the Mechanical System”, The First 
International Conference on Computational mechanic, 
Belgrade, 2004., (CD Rom) ISBN 86-7589-042-7 

DRC038


	2. Kinematic analysis of the complex mechanism 

