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Abstract 

A two dimensional boundary element method (BEM) 
formulation based on an initial strain approach has been 
successfully implemented for creep problems using Norton-Bailey 
creep law. The creep problems of a square plate and a plate with 
a circular hole are investigated for primary and secondary creep 
using isoparametric quadratic elements to model the boundary 
with 3-node boundary elements, and to model the interior domain 
with 8-node quadrilateral cells. The results of problems above are 
compared with the finite element solutions using MSC.Marc 
software and the analytical solutions where available and shown 
to be in good agreement. 
 
1. Introduction 
 The boundary element method (BEM) has been widely used 
to analyse both elastic and time-dependent inelastic engineering 
problems. Telles and Brebbia [1] presented the BEM formulation 
based on an initial strain approach for 2-D elastoplastic problems. 
Linear interpolation functions were employed for the boundary 
elements and the internal triangular cells. The von Mises yield 
criterion and the Prandtl-Reuss flow rule were applied for the 
plastic strain increment. The problems of a perforated aluminium 
strip under uniaxial tension, a polystyrene crazing problem under 
uniaxial and biaxial tension and plate strain punch were analysed. 
The results were compared and agreed well with the FEM and 
experimental results. Lee and Fenner [2] have presented the 
isoparametric quadratic boundary element formulation for two-
dimensional elastoplastic analysis based on an initial strain 
approach. The problems of uniaxial tensile behaviour, bending 

behaviour, internally pressurised cylinder, perforated plate in 
tension, and uniaxial behaviour in cyclic plasticity were analysed. 
The results were compared to and agreed well with the analytical 
solutions, experimental results and the FEM. Banerjee and 
Raveendra [3] have proposed the boundary element formulation 
based on an initial stress approach for 2-D and 3-D elastoplastic 
problems. The quadratic isoparametric representation was used 
to model the boundary elements and the volume cells. The 
problems of 2-D and 3-D thick cylinder and 3-D thick sphere 
under internal pressure, 2-D and 3-D perforated strip under 
tension and 2-D notched plate under axial tension were analysed. 
The results agreed well with the FEM and experimental results. 
Telles and Brebbia [4] have presented the boundary element 
formulation based on an initial stress approach for 2-D (plane 
stress and plane strain) and 3-D viscoplasticity and creep 
problems. Euler’s formula was used for time integration. The 
problems of a deep beam under uniform load, a thin disc under 
constant external edge load and a plate under thermal shrinkage 
were solved and compared with the FEM and the analytical 
solutions showing good agreement. Cathie and Banerjee [5] have 
presented the 3-D boundary element method for inelastic 
(plasticity and creep) problems. Two approaches, initial stress 
and initial strain, as well as the solution algorithm were 
introduced. A combined creep law which included both time 
hardening and strain hardening creep laws has been presented. 
The problems of square plates with and without holes under 
constant uniaxial and biaxial tension and a thick cylinder under 
internal pressure were analysed using a power law creep 
function. The boundary geometry and unknowns were 
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represented by quadratic elements. The forward difference 
approximation (Euler) was implemented for time integration. The 
results agreed well with the exact solutions. 

In this paper a BE formulation for creep and time-dependent 
material behaviour based on an initial strain approach is 
presented using Norton-Bailey creep laws. Isoparametric 
quadratic elements are used for the boundary element and 
domain cells. 
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2. 2D boundary element formulation for creep problems 
2.1 Integral equation for creep problems  

The BE formulation for creep is based on an initial strain 
approach which has the same form as that used for plasticity by 
replacing plastic strain rates by creep strain rates as follows (see, 
for example, Mukherjee [6]): 
 

               (1)     
∫ ∫

∫

Γ

Γ

+Γ

=Γ+

A

c
ijkijjij

jijiij

qdAqqPWQdQtQPU

QdQuQPTPuPC

)()(),()()(),(

)()(),()()(

ε&&

&&

 
where ,  and iu& it& c

ijε&  are the displacement, traction and creep 
strain rates, respectively. U , ij ijT  and kijW  are the displacement , 
traction and third-order kernels, respectively, which are functions 
of the position of the load point P and the field point Q or the 
interior point q and the material properties. Γ and A are the 
boundary and surface of the solution domain. The algebraic 
expressions for the kernels U , ij ijT  and kijW  can be found, for 
example, in Lee and Fenner [2]. 
 
2.2 Constitutive model. 

The Norton-Bailey creep law for time hardening based on 
the Prandtl-Reuss flow rule is used and can be defined as follows 
(see, for example, Kraus [7] and Becker and Hyde [8]):  
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where m, B and n are material constants dependent on 
temperature. effσ  and ijS  are the effective stress and the 
deviatoric stress, respectively. 
 
3. Numerical implementation. 
 To perform the integration in equation (1) numerically, the 
boundary and domain must be divided into a number of boundary 

elements and domain cells. It is convenient to use a new 
coordinate system that is local to the element using an intrinsic 
variable ξ with its origin at the midpoint node and values –1 and 
+1 at the end nodes. Figure 1 shows a typical three-node 
boundary element and a typical eight-node quadrilateral domain 
cell.  
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Figure 1 Isoparametric quadratic boundary element and cell. 
 

Since isoparametric quadratic elements are used for the 
boundary and domain elements, the geometry and unknown 
variables have the same order and can be described using the 
appropriate shape functions. Therefore, the geometry and 
unknown variables on the boundary can be written as follows: 
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where )(ξcN  is the boundary quadratic shape function and is 
defined as follows: 
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For the domain cells, two-dimensional quadratic shape 

functions are used as follows: 
 



Taking each boundary node in turn as the load point P and 
performing the integrations, a set of linear algebraic equations 
can be written as follows: 
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where the matrices [A], [B] and [W] contain the integrals of the 
kernels Tij, Uij, and Wkij, respectively. For two-dimensional 
problems, if the total number of boundary nodes is N and the 
total number of the domain cell points is H, then the solution 
matrices [A] and [B] will be square matrices of size 2N x 2N, 
whereas the matrix [W] will be a rectangular matrix of size 2N x 
3H. Unlike the FE method, all BE matrices are fully populated. 

 
where the domain  quadratic shape functions, ),( 21 ξξcN , are 
defined as follows: 
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The parameter Cij(P) contributes only to the diagonal 
coefficients of the [A] matrix (i.e. when P is equal to Q). When 
the points P and Q do not coincide, the standard Gaussian 
quadrature can be used.  
 
4. Convergence criterion 
 The Euler method is used to update the variables at each 
time step as follows: 
 

iiii ytyy &∆+=+1                     (9) 
 

Although it is relatively simple to implement, the Euler 
method is a very slow process if a constant time step is 
employed. To improve the convergence rate, an automatic time 
step control which will automatically select the next time step for 
the next calculation is implemented. The main idea is to compare 
the error, e, at each time step, with the two predefined errors or 
tolerances, the maximum error, emax, and the minimum error, emin, 
as follows: 

 
The integral equation (1) can be discretised into boundary 

elements and domain cells, and written in terms of the local 
coordinates as follows: 

 
(i)  If e > emax , the current time step is reduced by a factor of 
less than 1.0 and the  analysis is repeated. 
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(ii)  If emax > e> emin , the current time step is used for the next 
calculation. 
(iii)  If emin > e , the current time step is increased by a factor of 
greater than 1.0 for the next calculation.  

The creep strain error which occurs in each time step can be 
defined as follows (see, e.g. Mukherjee [16]): 

  
where M is the total number of the boundary elements and D is 
the total number of the domain cells. c is a node counter form 1 
to 3 for boundary elements and 1 to 8 for domain cells. )(ξJ  and 

),( 21 ξξJ  are the Jacobians of transformation.  
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Young’s Modulus (E) = 200x103 MPa where c
iε&  is the creep strain rate at i th step and c

iε  is the total 
creep strain. Note that the stress rate can alternatively be used in 
equation (10) instead of the creep strain rate. 

Poisson’s Ratio (ν) = 0.3  
B = 3.125x10-16  
m = 1.0 for secondary creep  
m = 0.5 for primary creep 5. Boundary element creep algorithm 
n  = 5  The BE algorithm for creep can be summarised in the 

following steps: The boundary conditions are as follows: 
uy = 0 along line ab 1.  Solve the BE equations to obtain the elastic solution 

(equation (1) without the last term) and calculate the stresses and 
strains at all nodes (at the boundary and interior nodes). 

ux = 0 along line ad 
 
 2.  Calculate the creep strain rates from equation (2) for time 

hardening. Note that, for the first calculation, time t is zero. 
d 

a b 

c 
 
 3.  For a small time step, solve the BE equations for creep 

(equation (1)) and calculate the stress and strain rates at all 
nodes. 

y  
 

x  4.  Check convergence. If the solution is not converged, reduce 
the current time step by a factor less than 1 and check the 
convergence again. This process will be repeated until 
convergence is achieved. 

 
Figure 2 BE and FE mesh for the square plate (8 boundary 

elements and 4 cells). 
 5.  Update the variables using the Euler method. 

Details of the 6 tests are listed below: 6.  Select the next time step. If the current error is between the 
minimum and maximum prescribed tolerances, the current time 
step is used for next calculation. If the current error is less than 
the minimum prescribed tolerance, the current time step is 
multiplied by a factor greater than 1 and is used for the next 
calculation. 

1. TEST1 and TEST2. The square plate is subjected to a 
uniaxial constant tensile stress of 200 N/mm2 in the x-direction for 
TEST1 and to a uniaxial displacement of 0.1 mm in the x-
direction for TEST2. Both tests are plane stress assumption and 
secondary creep law. The creep strains and stresses in the x-
direction are plotted against time and shown in Figure 3 and 
Figure 4, respectively. The results show very good agreement 
with the error being less than 1%. 

7.  Repeat steps 2-6 until the final time is reached.  
More details of the creep algorithm can be found in 

Chandenduang [9]. 
  

6. Creep examples 
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 All tests are performed for 1000 hours using the automatic 
time step control with the maximum and minimum stress 
tolerances of 10-1 and 10-2, respectively. The initial time step of 
10-3 hour and 6 integration points are used. The results are 
compared with analytical (Becker and Hyde [8]) and finite 
element (MSC.Marc [10]) solutions.  
 
6.1  Square plate 

Six cases involving a square plate under tension are tested. 
These tests include both primary creep and secondary creep. 
The dimensions of the square plate are 100 mm x 100 mm. The 
boundary and domain are divided into 4 boundary elements and 
1 cell, respectively, as shown in Figure 2. The material properties 
and creep parameters are as follows: 

Figure 3 TEST1: creep strain, plane stress, secondary creep. 
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Figure 4 TEST2: creep stress, plane stress, secondary creep. 

 
2. TEST3 and TEST4. The square plate is subjected to 

biaxial constant tensile stresses of 200 N/mm2 in the x-direction 
and 100 N/mm2 in the y-direction for TEST3 and to biaxial 
displacements of 0.1 mm in the x-direction and 0.05 mm in the y-
direction for TEST4. Both tests are plane strain assumption and 
secondary creep law. The creep strains and stresses are plotted 
against time and shown in Figure 5 and Figure 6, respectively. 
The results show very good agreement with the error being less 
than 1.2%. 
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Figure 5 TEST3: creep strain, plane strain, secondary creep. 
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Figure 6 TEST4: creep stress, plane strain, secondary creep. 

 
3. TEST5 and TEST6. The square plate is subjected to a 

uniaxial constant tensile stress of 200 N/mm2 in the x-direction for 

TEST5 and to a uniaxial displacement of 0.1 mm in the y-
direction for TEST6. Both tests are plane stress assumption and 
primary creep law. The creep strains and stresses are plotted 
against time and shown in Figure 7 and Figure 8, respectively. 
The results show very good agreement with the error being less 
than 1.4%. Note that the creep strain solution of FE gives an 
error up to 10%. 
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Figure 7 TEST5: creep strain, plane stress, primary creep. 
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Figure 8 TEST6: creep stress, plane stress, primary creep. 

 
6.2 Square plate with a circular hole 

A square plate with a circular hole at the center is analysed. 
Because of symmetry, only a quarter of the plate is used. The 
quarter of the plate with a circular hole has the dimensions of 10 
mm x 10 mm with a hole of a radius of 3 mm. The boundary and 
domain are discretised into 28 boundary elements and 48 cells, 
respectively, as shown in Figure 9.  The boundary conditions are 
as follows: 

uy = 0 along line ab. 
ux = 0 along line de. 
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7. Summary 
A 2D BE formulation for creep problems using isoparametric 

quadratic elements is presented. A computer program based on 
the BE formulation with automatic time stepping and automatic 
convergence checks is successfully applied to solve the problems 
of square plates and a plate with a circular hole. The results are 
compared with the analytical solutions and the FE solutions using 
MSC.Marc and show good agreement.   
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