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Abstract 
Nodeless finite element method is presented to 

predict the temperature distribution for heat transfer 
problems.  The paper first describes 2D heat transfer 
theory. The finite element formulations based on nodeless 
element, the computational procedure and its boundary 
conditions are then represented. The validated examples 
with analytical solution of the proposed technique are 
rectangular plate with periodic temperature problem and 
rectangular plate with internal heat generation as well as 
periodic temperature problem.  The solutions show that 
the nodeless finite element method can be employed to 
predict the temperature distribution efficiently. 
 
1. Introduction 
 Finite element method is applied to solve heat 
transfer problems for a decade.  Steady–state heat transfer 
can be predicted by applying the method of weighted 
residual (MWR).  The various element types and their 
element interpolation functions are widely developed 
such as 3–node triangle with linear element interpolation 
function, 6–node triangle with quadratic element 
interpolation function, 10–node triangle with cubic 
element interpolation function, and etc.   
 This paper presents nodeless finite element method to 
solve 2D steady state heat transfer problem. Nodeless 
triangular elements and their element interpolation 
functions are described. Then, the computational 
procedure and its boundary conditions are shown.  Next, 
the computational solutions by nodeless finite element 
method are validated with the exact solution and the 
finite element solutions using linear triangular element, 
respectively.  
 
2. Theory 
2.1 Governing differential equation 

 Steady–state heat transfer problem is governed by 
energy equation as following. 
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where k is the thermal conductivity, T is the temperature 
and Q is the internal heat generation. 
 
2.2 Element interpolation functions and finite element 
matrices [1] 
 Nodeless triangular element consists of 3 nodes and 3 
nodeless per element as shown in figure 1.   
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Nodeless element and its connectivity. 
 
 
Its element interpolation functions are in the form, 
 

       Ni(x,y) = Ψ Ζycxba
A2
1

iii ∴∴      i = 1, 3                 (2) 

 
       N4 = 4N1 N2   ;   N5 = 4N2 N3   ;   N6 = 4N1 N3       (3) 
 
where 
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          a i  =  x j y k  –  x k y j  ,  b i  =  y j – y k  , 
          c i  =  x k – x j                             i, j=1,3 
 
ai , bi , and ci coefficients are obtained by cyclically 
permuting the subscripts, and A is the triangular area. 
 
 After applying MWR in equation 1, the finite 
element equation based on Bubnov–Galerkin method is 
obtained to solve 2D heat transfer problem. 
 
→ ° → °Ψ Ζ∈ ∠TKK hc ∴  = ∈ ∠ ∈ ∠ ∈ ∠ ∈ ∠hqQc QQQQ ∴∴∴               (4) 
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3. Examples 
   A rectangular plate with sinusoidal thermal load is 
presented as the first example to validate nodeless finite 
element method for 2D steady–state heat transfer. The 
results gained from the nodeless finite element 
calculation are compared to the exact solution and the 
approximation solutions using 3–node triangular element.  
Then, applying internal heat generation in plate to 
evaluate the performance of nodeless finite element to 
solve 2D steady–state heat transfer problem. 
 
3.1 Rectangular plate with sinusoidal temperature 
      Rectangular plate with dimension 0.5x1 unit is 
applied with a sinusoidal temperature function at the top 
edge and the constant zero temperature is applied along 
the left edge as shown in figure 2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Problem statement of rectangular plate. 
 
This problem has an exact solution in the form, 
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where To = 1.0 
 
After applying nodeless finite element method, the 
solution of temperature distribution is shown in figure 3. 
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Figure 3. Temperature distribution on rectangular plate. 
 
 To validate the accuracy of nodeless finite element 
method, the rectangular plate is discretized in several 
finite element model i.e. 32 elements, 48 elements, 64 
elements, 72 elements, 96 elements, 112 elements, 256 
elements, and 400 elements as shown in figure 4. 
 
 
 
 
 
 
 
 
 
 
    (a) 32               (b) 48               (c) 64               (d) 72 
 
 
 
 
 
 
 
 
 
 
     (e) 96             (f) 112             (g) 256             (h) 400 
 

Figure 4. Finite element number of rectangular plate. 
 
 

Figure 5 shows temperature solution along x 
direction at y = 0.5 of nodeless finite element solution 
comparing with exact solution and linear triangular 
element solution.  Figure 6 displays temperature solution 
along y direction at x = 0.25. The results express a good 
accuracy of nodeless finite element method in both of 32 
elements and 400 elements.  

 
The computational error has been collected in every 

models and displayed in figure 7 and 8.  The results show 
that nodeless element has fewer errors than linear element 
in every element number.   
 
 

 
 
 
 

0.00
0.01
0.02
0.03
0.04
0.05
0.06

0.0 0.1 0.2 0.3 0.4 0.5

 
Figure 5 Temperature distribution along x axis at y = 0.5. 
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Figure 6 Temperature distribution along y axis at x = 0.25 
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Figure 7 Error of temperature along x axis at y = 0.5 
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Figure 8 Error of temperature along y axis at x = 0.25 
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3.2 Rectangular plate with sinusoidal temperature and 
internal heat generation 
 This example is more complicated than the previous 
example. The dimension of geometry is similar to the 
first example. Thermal load consists of sinusoidal 
temperature at the top edge and the internal heat 
generation. 
 The exact solution of this problem is in the infinite 
series form as shown below, 
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where a = 1.0, b = 1.0 
 
 Finite element model consists of 400 elements and 
231 nodes.  Figure 9 shows temperature solution 
computed by nodeless finite element method. 
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Figure 9 Temperature distribution of second problem. 
 
 The computational solution is plot with respect to 
distance in x direction at y = 0.5 and y direction at x = 
0.25 as shown in figure 10 and 11, respectively.   
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Figure 10 Temperature distribution along x axis at y = 0.5 
of rectangular plate with sinusoidal temperature at top 
edge and internal heat generation. 
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Figure 11 Temperature distribution along y axis at x = 
0.25 of rectangular plate with sinusoidal temperature at 
top edge and internal heat generation. 
 
 
4. Conclusions 
 Nodeless finite element method is presented to 
predict 2D heat transfer problem.  The proposed method 
is validated with two examples and comparing with exact 
solution and finite element method using linear triangular 
element.  The results clearly show that the nodeless 
element method give a higher accuracy than the linear 
element in solving 2D steady-state heat transfer problem. 
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