

TSF 32

การประชุมวิชาการเครือข่ายวิศวกรรมเครื่องกลแห่งประเทศไทย ครั้งที่ 24 20-22 ตุลาคม 2553 จังหวัดอุบลราชธานี

การส่งเสริมการถ่ายเทความร้อนจากเบดสู่ผนังห้องฟลูอิดไดซ์เบดแบบหมุนเวียนด้วย วงแหวนหันเหอนุภาครูปลิ่ม

Heat transfer enhancement from bed to the wall of a circulating fluidized bed riser by using wedge shaped deflector rings

เกษสินทร์ จุ่นหัวโทน¹,และ อนุสรณ์ ชินสุวรรณ^{*1}

¹ ภาควิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น จ.ขอนแก่น 40002 * ติดต่อ: โทรศัพท์: 043 202 845, โทรสาร: 043 202 849

E-mail: anuchi@kku.ac.th

<u>บทคัดย่อ</u>

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อที่จะศึกษาการส่งเสริมการถ่ายเทความร้อนจากเบดสู่ผนังห้องฟลูอิดไดซ์ เบดแบบหมุนเวียน (circulating fluidized bed) ด้วยวงแหวนหันเหอนุภาครูปลิ่ม ห้องฟลูอิดไดซ์เบดเป็นชนิดที่ไม่ มีการเผาไหม้ซึ่งมีขนาด พื้นที่หน้าตัด 100 mm x100 mm สูง 4.8 m วงแหวนวางห่างกัน 1.2 m ทรายขนาด 231 µm ใช้เป็นอนุภาคเบด (bed particle) ทำการทดลองที่ความเร็วหน้าชั้นฟลูอิดไดซ์ใดซ์เบด (superficial velocity) และอัตราการไหลเวียน (solid circulation rate) ในช่วง 4-7 m/s และ 5-15 kg/m².s ตามลำดับ ผลจากการทดลอง พบว่า วงแหวนสามารถส่งเสริมการถ่ายเทความร้อนสู่ผนังห้องฟลูอิดไดซ์เบดเมื่อเทียบกับห้องฟลูอิดไดซ์เบดที่ไม่ มีวงแหวน และสัมประสิทธิ์การถ่ายเทความร้อนเพิ่มขึ้น 12.64% จะเพิ่มขึ้นเมื่อความหนาแน่นเฉลี่ยของชั้นฟลูอิด ไดซ์เบด (cross sectional average suspension density) เพิ่มขึ้น

คำสำคัญ: ฟลูอิดไดซ์เบดแบบหมุนเวียน, การส่งเสริมการถ่ายเทความร้อน, การพาความร้อนด้วยอนุภาค

Abstract

The purpose of this work was to study the heat transfer enhancement from the bed to the wall of a circulating fluidized bed riser by using wedge shaped deflector rings. The cold fluidized bed riser having a cross sectional area of $100mm \times 100mm$, height of 4.8m, with distance between the rings was 1.2m. Sand having an average diameter of $231\mu m$ was used as the bed material. The experiments were performed at superficial velocity and solid circulation rate of 4-7m/s and $5-15kg/m^2s$ respectively. It was found that heat transfer coefficient of the riser with deflector rings was higher than that without the rings and that the heat transfer coefficient increased 12.64% as the cross sectional average suspension density increased.

Keywords: Circulating fluidized bed, Heat transfer enhancement, Particle convection

1. บทน้ำ

เครื่องกำเนิดไอน้ำแบบฟลูอิดไดซ์เบดแบบ หมุนเวียน (Circulating fluidized bed boiler, CFB boiler) กำลังนิยมใช้กันอย่างแพร่หลายทั่วโลก เนื่องจากมีข้อดีหลาย ๆด้าน เช่น สามารถใช้กับ เชื้อเพลิงหลากหลายประเภท ทั้งยังปลดปล่อยสาร มลพิษ (SO₂,NO_x) สู่บรรยากาศน้อยกว่าเมื่อ เปรียบเทียบกับเครื่องกำเนิดไอน้ำแบบถ่านหินผง (Pulverized coal fired) [1] การถ่ายเทความร้อนสู่ ผนังท่อน้ำ (water wall tube) ในห้องเผาไหม้ส่วนใหญ่ เกิดขึ้นจากการถ่ายเทความร้อนจากกลุ่มอนุภาค ของแข็ง(cluster)ในขณะที่มันไถลตัวลงมาตามผนังท่อ

ความสามารถของเครื่องกำเนิดไอน้ำ (boiler capacity) ชนิดนี้มีแนวโน้มสูงขึ้นอย่างรวดเร็ว จาก 25*MW* ใน ค.ศ. 1997 เป็น 460*MW* ในอีก 9 ปี ต่อมา และกำลังพัฒนาให้เครื่องมีความสามารถเป็น 600-800MW ในอนาคต [2] เพื่อให้สอดคล้องกับ แนวโน้มดังกล่าว นักวิจัยได้พยายามหาวิธีลดขนาด เครื่องกำเนิดไอน้ำ เช่น การเพิ่มพื้นที่ผิวแลกเปลี่ยน ความร้อนด้วยการติดครีบ (fin) ที่ผิวด้านนอกของท่อ น้ำ [3.4.5] นอกวิธีการดังกล่าวแล้ว การลดขนาดของ เครื่องกำเนิดไอน้ำยังสามารถทำได้โดยการเพิ่ม สัมประสิทธิ์การถ่ายเทความร้อนสู่ผนังท่อน้ำอย่างไรก็ พบว่าเป็นวิธีที่พบในวรรณกรรมน้อยมาก ดังนั้นใน งานวิจัยในครั้งนี้จึงมีวัตถุประสงค์ที่จะศึกษาการ ส่งเสริมการถ่ายเทความร้อนสู่ผนังห้องฟลูอิดไดซ์ด้วย การเพิ่มสัมประสิทธิ์การถ่ายเทความร้อนสู่ผนังห้อง โดยการใช้วงแหวนหันเหอนุภาครูปลิ่ม

2. ทฤษฎี

การถ่ายเทความร้อนจากห้องฟลูอิดไดซ์เบดสู่ผนัง ห้องโดยการพาความร้อนและการแผ่รังสีของเฟสเจือ จาง (dilute phase) และกลุ่มอนุภาคของแข็ง (cluster) สำหรับระบบที่มีอุณหภูมิของชั้นฟลูอิดไดซ์เบด (bed temperature) ต่ำ ๆแล้ว สามารถละทิ้งอิทธิพลของการ แผ่รังสีที่เกิดขึ้นได้และสัมประสิทธิ์การถ่ายเทความ ร้อนรวมสู่ผนังห้องสามารถหาได้ดังนี้ [6]

$$h = \frac{Q}{A(T_s - T_b)}....(1)$$

เมื่อ h คือ สัมประสิทธิ์การถ่ายเทความร้อนรวม เฉพาะที่ (local heat transfer coefficient) A คือ พื้นที่การแลกเปลี่ยนความร้อน T_s คือ อุณหภูมิที่ผิว แลกเปลี่ยนความร้อน T_b คือ อุณหภูมิเฉลี่ยของชั้น ฟลูอิดไดซ์เบด และ Q คือ อัตราการถ่ายเทความร้อน

เมื่อพิจารณาที่ตัววัดการถ่ายเทความร้อนแสดงดัง รูปที่ 1 ในสภาวะทรงตัว (steady state) เนื่องจากตัว วัดที่มีการหุ้มฉนวนที่ด้านนอกอย่างดี ดังนั้นจึง สามารถสมมติให้ความร้อนที่แผ่นทำความร้อนส่ง ให้แก่ตัววัดเข้าสู่ชั้นฟลูอิไดซ์เบดเท่านั้น ดังนั้น

ร**ูปที่ 1** ชุดให้ความร้อนและตัววัดสัมประสิทธิ์การ ถ่ายเทความร้อน

$$h = \frac{W}{A(T_s - T_b)} = \frac{IV}{A(T_s - T_b)}....(2)$$

เมื่อ W คือ กำลังไฟฟ้าที่ให้แก่แผ่นทำความร้อน I และ V เป็นกระแสไฟที่ไหลผ่านและความต่าง ศักย์คล่อมแผ่นทำความร้อน ตามลำดับ

การถ่ายเทความร้อนขึ้นอยู่กับความหนาแน่น เฉลี่ย(average suspension density, ρ) ตลอดหน้า ตัดของท่อไรเซอร์และความสูง [7] โดย

$$\rho = \frac{\Delta P}{gH}$$
(3)

เมื่อ **AP** คือ ความแตกต่างความดันระหว่างจุดวัด
 g คือแรงโน้มถ่วงของโลก และ *H* คือความสูงหรือ
 ระยะห่างระหว่างจุดวัดความดัน

3. การทดลอง

ระบบฟลูอิดไดซ์เบดแบบไม่มีการเผาไหม้ที่ใช้ใน การทดลองประกอบด้วย ท่อหน้าตัดสี่เหลี่ยมจัตุรัส ขนาด 100 mm x 100 mm ความสูง 4800 mm โดยที่ ช่วงทดลอง (test section) สูง 1200 mm ดังรูปที่ 2 การทดลองทำที่ความเร็ว 6 m/s อากาศจากพัด ลม (blower) ถูกส่งตามท่อเข้าห้องเผาใหม้ฟลูอิดไดซ์ (riser) โดยผ่านแผ่นกระจายลม(air distributor) ที่อยู่ ด้านล่างของห้องฟลูอิดไดซ์โดยแผ่นกระจายลม ทำ จากเหล็กหนา 6mm เจาะรูขนาดเส้นผ่านศูนย์กลาง 3 mm โดยระยะห่างของแต่ละรู 10 mm ทำให้สัดส่วน ของพื้นที่รูเปิดคิดเป็น 7.07 % ของพื้นที่ ทรายขนาด เฉลี่ย 231 μm ใช้เป็นอนุภาคชั้นฟลูอิดไดซ์เบด อนุภาคของแข็งออกจากด้านบนของห้องฟลูอิดไดซ์จะ ถูกแยกออกด้วยไซโคลนแล้วถูกป้อนกลับสู่ห้องฟลูอิด ไดซ์เบดโดยผ่านระบบท่อนำกลับ (return pipe) ที่ต่อ ้อยู่ที่ปลายทางออกของไซโคลน ความหนาแน่นเฉลี่ย (suspension density, ho) สามารถควบคุมได้ด้วย ้วาล์วควบคุมอนุภาค(particle control valve) ที่อยู่ ด้านล่างของท่อป้อนกลับ

ตัววัดค่าสัมประสิทธิ์การถ่ายเทความร้อน ทำ จากแผ่นทำความร้อนกำลัง และ 150 W ซึ่งมีขนาด 15 mm x 80 mm ที่ด้านหน้าประกบเข้ากับแผ่น **TSF 32**

ทองแดงหนา 4 mm เทอร์โมคัปเปิลชนิดที(T-Type) ถูกติดไว้กึ่งกลางความหนาของแผ่นทองแดง ด้านหลัง ประกบกับไม้อัด หนา12 mm ดังรูปที่ 1 เนื่องจาก ความหนาของทองแดงที่ใช้มีค่าน้อยมากและตัวมันเอง มีสัม ป ระ สิทธิ์การนำ ความ ร้อน สูง (thermal conductivity) ดังนั้นจึงประมาณได้ว่าอุณหภูมิที่อ่าน ได้ที่กึ่งกลางความหนาของแผ่นทองแดงเท่ากับ อุณหภูมิของผิวหน้าของแผ่นทำความร้อน

ร**ูปที่** 4 ส่วนทดสอบ a) ส่วนทดสอบที่ไม่มีวงแหวน หันเหอนุภาค b) ส่วนทดสอบที่มีวงแหวนหันเห อนุภาค

ส่วนทดสอบ (test section) ถูกติดตั้งที่ตำแหน่งสูงจาก แผ่นกระจายลมเป็นระยะ 1800mm ซึ่งส่วนทดสอบ ประกอบด้วย แผ่นเหล็กขนาด 100 mm x 1200 mm หนา 1.2 mm ที่มีตัววัดสัมประสิทธิ์การถ่ายเทความ ร้อนมีทั้งหมด 9 ตัวติดตั้งอยู่บริเวณกึ่งกลางความ กว้างของห้องฟลูอิดไดซ์เบด การทดสอบกระทำกับ ส่วนทดสอบสองแบบคือ แบบที่ไม่มีวงแหวนหันเห อนุภาค และแบบที่มีวงแหวนหันเหอนุภาค วงแหวน รูปลิ่ม (wedge shaped) มี ขนาด 10mm x 100 mm สูง10mm ดังรูปที่ 4

> เงื่อนไขการทดลองแสดงตารางที่ 1 ตารางที่ 1 เงื่อนไขการทดลอง

Mean particle size, d _p	231 μm
Particle density, P s	2774 kg m^{-3}
Superficial velocity, U	6 m s^{-1}
Suspension density, ρ	$3-20 \text{ kg m}^{-3}$
Bed temperature, T _b	30-60 °C

การทดลองครั้งนี้ทำที่ความเร็วหน้าชั้นฟลูอิด ไดซ์เบด (superficial velocity,V_s) คงที่ ที่ 6 m/s เพื่อ ศึกษาอิทธิพลของความหนาแน่นเฉลี่ยตลอดหน้าตัด ของชั้นฟลูอิดไดซ์เบด (cross section average suspension density) และอิทธิพลของวงแหวนหันเห อนุภาค (deflector) ที่มีผลต่อการถ่ายเทความร้อน ความร้อนสู้ผนังห้องฟลูอิดไดซ์เบด

4. ผลการทดลองและการวิเคราะห์

จากรูปที่5 พบว่าเมื่อความเร็วคงที่แล้วความ หนาแน่นของอนุภาคต่างกัน จะส่งผลให้ สัมประสิทธิ์ การถ่ายเทความร้อนมีค่าต่างกันโดย ค่าสัมประสิทธิ์ การถ่ายเทความร้อนนี้จะขึ้นอยู่กับความหนาแน่น เฉลี่ยยิ่งความหนาแน่นมากก็จะทำให้สัมประสิทธิ์การ ถ่ายเทความร้อนสูงตามไปด้วย ซึ่งสอดคล้องกับ งานวิจัยของ Chinsuwan and Dutta (2009a) และ Luan et. al. (2000) [3,8] การถ่ายเทความร้อนที่ผนัง ห้องฟลูอิดไดซ์เบดนั้นเกิดขึ้นเนื่องจากการการถ่ายเท ความร้อนระหว่างกลุ่มอนุภาค (cluster) ไถลตัวไป ตามผนังห้องซึ่งการไถลตัวนี้มีระยะประมาณ 1-1.2 m [6] ดังนั้นสัมประสิทธิ์การถ่ายเทความร้อนจึงลดลง ตามระยะเนื่องจากกลุ่มอนุภาคมีอุณหภูมิสูงขึ้นทำให้ เกิดผลต่างอุณหภูมิระหว่างอุณหภูมิของผนังห้องและ กลุ่มอนุภาคที่เข้ามาแลกเปลี่ยนความร้อนมีค่าลดลง จากการเปรียบเทียบค่าสัมประสิทธิ์การถ่ายเท [9] ความร้อนของตัวที่ติด และไม่ได้ติดวงแหวนหันเห อนุภาคพบว่าค่าสัมประสิทธิ์การถ่ายเทความร้อนของ ตัวที่ติดวงแหวนหันเหอนุภาค จะเพิ่มขึ้น 12.64 แสดงดังรูปที่ 6 ทั้งนี้สาเหตุน่าจะเนื่องมาจากวงแหวน ทำให้กลุ่มอนุภาคที่เข้ามาแลกเปลี่ยนความร้อนที่ผนัง ห้องไถลตัวตามผนังห้องสั้นลงแล้วมีกลุ่มอนุภาคใหม่ cluster) ที่เข้ามาแทนที่ ทำให้เกิดการ (renewal แลกเปลี่ยนความร้อนสูงขึ้น เป็นที่น่าสังเกตว่า สัมประสิทธิ์การถ่ายเทความร้อนจะลดลงตามระยะทาง แล้วกลับเพิ่มขึ้นอีกที่บริเวณใกล้ๆ วงแหวนตัวล่างซึ่ง แสดงให้เห็นถึงอิทธิพลทางไฮโดรไดนามิกส์ของวง แหวน

ร**ูปที่ 5.** อิทธิพลของความหนาแน่นเฉลี่ยตลอดหน้า ตัดต่อสัมประสิทธิการพาความร้อนที่ความเร็วหน้าชั้น ฟลูอิดไดซ์เบด(superficial velocity) ที่ 6m/s

5. สรุปผลการทดลอง

จากวิจัยในครั้งนี้เพื่อจะศึกษาถึงอิทธิพลของ การส่งเสริมการถ่ายเทความร้อนสู่ผนังห้องฟลูอิดไดซ์ เบดด้วยวงแหวนหันเหอนุภาค จากการที่นำวงแหวน หันเหอนุภาคมาติดตั้งที่ระยะห่างกัน 1.2 m ของระบบ ฟลูอิดไดซ์เบดแบบไม่มีการเผาไหม้ พบว่าค่า สัมประสิทธิ์การถ่ายเทความร้อนเพิ่มสูงขึ้น 12.64 % เนื่องจากวงแหวนทำให้กลุ่มอนุภาคที่เข้ามา แลกเปลี่ยนความร้อนที่ผนังห้องไถลตัวสั้นลงและมก ลุ่มอนุภาคใหม่ เข้ามาแทนที่จึงทำให้เกิดการ แลกเปลี่ยนความร้อนที่สูงขึ้น

กิตติกรรมประกาศ

โครงการนี้ได้รับทุนอุดหนุนการวิจัยจากศูนย์วิจัย และพัฒนาพลังงานทดแทน มหาวิทยาลัยขอนแก่น ผู้วิจัยใคร่ขอขอบพระคุณศูนย์วิจัยเครื่องจักรกลเกษตร และวิทยาการหลังการเก็บเกี่ยวที่ให้การสนับสนุน เครื่องมีวัดและเครื่องมือที่ใช้สร้างเครื่องทดลอง

เอกสารอ้างอิง

- [1] Basu, P. (2006). Combustion and gasification in fluidized beds. CRC Press, FL
- Jäntti, T.; Eriksson, T.; Hotta, A.; Hyppänen,
 T.; Nuortimo, K. Circulating Fluidized-bed
 Technology toward zero CO2 Emissions.
 POWER-GEN Europe 2006, Cologne,
 Germany.
- [3] Chinsuwan, A., Dutta, A. (2009a).An experimental investigation on the effect of longitudinal fin orientation on heat transfer in membrane water wall tubes in a circulating fluidized bed, International Journal of Heat and Mass Transfer, 52(5-6), 1552-1560.
- [4] Chinsuwan, A., Dutta, A., (2009b). An investigation of the heat transfer behavior of longitudinal finned membrane water wall tubes in circulating fluidized bed boilers, Powder Technology, In press.
- [5] Basu, P. and Cheng, L., (2000). An experimental and theoretical investigation into the heat transfer of a finned water wall tube in a circulating fluidized bed boiler. *International Journal of Energy Research*, 24, 291-308.
- [6] Basu, P. and Fraser, S.A., (1991). Circulating Fluidized Bed Boilers-Design and Operation Butterworths-Heinemann, Stoneham.

- [7] Kunii, D., and Levenspiel, O., (1991).*Fluidization Engineering*. Butterworths-Heinemann, Stoneham.
- [8] Luan, W., Bowen, B.D., Lim, C.J., Brereton, C.M.H., and Grace, J.R., (2000). Suspensionto-membrane-wall heat transfer in a circulating fluidized bed combustor. *International Journal of Heat and Mass Transfer*, 43, 1173-1185.
- [9] Glicksman, L.R., (1997). Heat transfer in circulating fluidized beds. in: Grace, J.R., Avidan, A.A. and Knowlton T.M., Eds., *Circulating Fluidized Beds*, Chapman & Hall, London.