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Abstract 
 This paper describes an arrangement of a one-
dimensional distributive tactile sensing system that can be used 
to determine a simple contact parameter of an applied position of 
a constant magnitude point load. The load position was 
determined using a back propagation neural network as an 
interpretation algorithm. Three neural network training strategies 
were attempted and reported in this paper. It was found that 
randomly chosen training positions resulted in the largest 
determination errors between 4.7 – 16.8% of the total beam 
length. The error was reduced to 4.6% when the training 
positions were at an equal pitch. It was also found that higher 
errors were obtained when the load position was close to either 
end of the beam because the beam deflection was of different 
sensitivity. To reduce this type of errors, cascade neural networks 
were introduced. The principal of the cascade approach relies on 
a crude filtering of load position in to a pre-defined section of the 
beam and fine-tuning the result to obtain a more precise position 
of load. The result of cascade neural network training strategy 
showed a reduction of determination error to 1.0%. 
 
1.  Introduction 

A tactile sensing device has been defined as a device that is 
used to determine a contact interaction between the device and 
some stimuli [1]. In many applications tactile sensing has been 
devised to emulate the vision role in determining shape, size and 
position of a contacting object [2]. Such devices often employ a 
large number of sensing elements to ensure sufficient spatial 

resolution as each element is activated independently. This is 
sometimes referred to as ‘discrete’ sensing scheme. However, 
the discrete tactile sensing is achieved at a cost of complex 
construction and high computational load. In contrast to the 
discrete scheme described above, the approach described in this 
paper is able to discriminate between different loadings and 
offers the potential to minimise the number of data sets [3], [4]. 
This method is referred to as ‘distributive’ because it relies on a 
continuum medium of which responses to a contact can be 
detected entirely over the active area rather than at a local 
contact point. The sensing elements of a distributive system are 
not necessary an integral part of the surface and the 
measurement points can be appropriately selected across the 
surface area. The determination of contact is made from the 
unique patterns of the sensing information that vary between 
contact types. 
 
2. Arrangement of the test rig 

A distributive system used as the case study has been 
defined as a simply supported beam structure. An applied load 
position on the beam is to be determined from the deflection. The 
applied load has been defined as a case of a constant point load. 
The chosen system has advantages of simplicity where its 
performance can be easily defined and extended to more 
complicated cases such as a two-dimensional system.  In terms 
of applications, the case study has an important implication in 
force sensing such as force-feedback tools.  An example of such 
tools is an endoscope which has a force-feedback sensing unit 



installed at its tip. The arrangement of the system under study is 
shown in Figure 1. 
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e one-dimensional distributive beam system under 
study 

-dimensional surface is a mild steel beam of 
0 × 400 × 1.2 mm supported at both ends by 
N load having a point contact with the surface is 
 surface and the induced deflection measured at 8 
ed at an equal pitch of approximately 44 mm. The 
the beam at the measurement points can be 

erimentally using transducers such as proximity 
rs [1] as well as by simulation. 

ulation of the surface deflection  
to efficiently study performances of the described 
thematical model describing the behaviour of the 
een defined and the corresponding computational 
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lection behaviour of the beam surface can be 
m the standard beam bending theory reported in 
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ter program used to simulate the beam deflection 
d. The simulated deflection and the measurements 
 be in good agreement. An example comparison 
lated and measured deflections is shown in Figure 
d of 3 N was applied at the centre of the beam. 

 
Figure 2. Simulated beam deflections 
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4. The determination of an applied load position 

The determination of an applied load position was carried 
out using a neural network as an interpretation algorithm. The 
neural network takes the beam deflection at measuring points as 
inputs and interprets for the corresponding applied load position 
as the output. Prior to the process of interpretation, the neural 
network must be trained to establish the relationship between the 
input and the output from selected load positions that will be 
referred to as the training positions. This section investigates the 
performance of the neural network to determine an applied load 
position for the networks trained with random and equally spaced 
positions. 

 
4.1 Training procedure 

In the training process, load positions and the corresponding 
beam deflections at points of measurement were obtained for 
training. As we wish to determine an applied load position from 
measured deflection, the former was the network output and the 
latter the neural network input. The number of input data was 
fixed at 8 points of measurement. For each neural network, 10 
load positions were given for training. The training was carried out 
to achieve the error between the desired and the network outputs 
of no more than 0.001%. The momentum rate and the learning 
rate were fixed at 0.9 and 0.7 respectively. The networks created 
received 8 inputs (beam deflection) with one hidden later and 10 
hidden nodes and outputs a single value of the load position. 

 
4.2 The performance of the network to determine an applied 

load position 
After the neural network was trained to achieve the specified 

conditions, it was used to determine an applied load positions 
from deflection at the points of measurement. The performance of 
each network was obtained using test data of 399 load positions 
at an equal pitch of 1 mm. It should be noted that some of the 
test data maybe the same as the training positions, but most 
were not.  
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In some of the analyses carried out following this section, 
the performance was obtained in terms of determination 
positional error that was calculated from [6] 
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Where e is the positional error of the beam length (%), A is 

the applied load position (mm), P is the determined load position 
(mm), and l is the beam length (mm). 

 
4.3 Random training positions 

In the first investigation, random load positions were used to 
train the neural network. In order to see the overall trend of the 
accuracy of the system, 10 sets of training positions were 
randomly generated and the corresponding induced deflections at 
measurement points obtained using equation (1). Each set was 
used to train the neural network to meet the specified conditions. 
The test of performance to determine an applied load position 
was carried out using the test data described in 4.2. The 
positional errors of each networks were calculated using equation 
(2) and the average value plotted in Figure 3. 

 
 
 
 
 
 
 
 
 

 
Figure 3 Average positional errors of the networks with random 

training positions 
 

Figure 3 shows that the average positional error of the 
determination of an applied load position varies greatly between 
4.7 – 16.8% of the beam length when the training positions were 
randomly selected. On average the networks trained with random 
load positions was considerably high at 11.1% (corresponding to 
approximately 44.4 mm). It is not surprising that the randomly 
selected training positions resulted in such diverse accuracy and 
tendency of high errors. The reason for this is that the random 
positions chosen for training can be more clustered in area than 
others. Because of clustering, the network was likely biased 
towards to the area of high density of training positions and 

produced higher areas where there were less data available in 
training.  
 
4.4 Equally spaced training positions 

Solving the clustering effect of the random training positions 
can be conveniently achieved by choosing the training positions 
such that they well cover the entire beam length. To achieve this, 
the training positions were chosen with a uniform distribution 
across the beam length with an equal separation of 40 mm. The 
first training position was chosen at 20 mm from the left end and 
the rest of the training positions were located at 40 mm 
separation from one another. After training with the described 
equally pitched positions, the network was tested for its 
performance using the test data described in 4.2. The 
determination of an applied load position is plotted in Figure 4. 
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Figure 4 The determination of an applied load position with 
training positions at an equal pitch 

 
On average the positional error was 4.6% of the beam 

length. This was comparable to the smallest error obtained when 
the training positions were random (training number 8 in Figure 3) 
but significantly smaller than other sets of random training 
positions. As expected, the equally uniform training positions are 
more effective than random positions. 
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The plot in Figure 4 shows that high errors were obtained 
when load was applied near either end of the beam. This was 
due to the variation in sensitivity of the beam’s response to an 
applied load. When load was applied near the ends, the induced 
deflections were of small magnitudes from which the network 
determined an applied load position with a greater difficulty 
resulting in high errors. In contrast, load applied near the beam 
centre induced larger deflections that were more easily captured. 
Despite of this phenomenon, the network trained with 10 load 
positions uniformly distributed did not take into account the 
difference in the sensitivity of the inputs. Although it maybe 
suitable to use a single network to determine an applied position 
when load application is concentrated near the centre of the 



beam, it may not be the best solution when load application is 
across the entire beam length. 

 
5. Cascade neural network 

The cascade neural network has been implemented to 
respond to different types of neural network information. For 
example in [7] the cascade approach was used to determine 
different parameters such as position, width and magnitude of 
load on a one-dimensional distributive tactile sensing surface. In 
this paper, the cascade network will be used to determine load 
positions in different sections of the beam. 

 
5.1 The architecture of cascade neural network 

As can be seen in Figure 4 in 4.4, the accuracy in 
determining an applied load position across the beam length can 
be divided into 3 sections that are on the left and right end of the 
beam and in the centre. The criteria on which how the section 
should be divided is based on the work by Tongpadungrod [1] 
which suggested that the sensitivity of the beam length at each 
quarter of the beam length at either end was different from the 
rest of the beam. By using such criteria the beam can be divided 
into 3 sections at 0 –100 mm (section 1), 100 – 300 mm (section 
2) and 300 – 400 mm (section 3). To use the cascade networks 
to respond to each section of the beam separately, it is essential 
to firstly classify the load position into which the section of the 
beam it was applied. This can be viewed as a simple filter to 
match the load position into a sub-section before fining tuning for 
a more precise result. The architecture of the cascade networks 
is shown in Figure 5. 
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5.2 Classification of an applied load position 
In the first classification, the beam deflection was passed to 

a filtering network to determine the section of the beam in which 
the load was applied. In general one will find that the neural 
network is of high accuracy when used as a classification tool. A 
similar work regarding this aspect of neural network usage can 
be found in [1].  

Like previous use of neural network, the neural network for 
section classification was trained with selected load positions. 
Because in 4.4 it was shown that the equally spaced training 
positions were most effective, they were chosen to train the 
networks in this part of study. In order to provide sufficient 
training data, 10 applied load positions at an equal pitch in each 
section discussed in 5.1 were picked for training the networks. 
Note that sharp boundaries were applied when determining 
section of an applied load. For the section filtering network, the 
network input was of 8 components (beam deflections) and the 
output comprised 3 components corresponding to the specified 
sections of the beam. The hidden layer between the input and 
the output comprised 10 hidden nodes. The momentum rate and 
learning rate were 0.9 and 0.7 respectively. Because 
determination of an applied section was a coarse filtering 
process, the error between the desired and the network outputs 
was higher than that used for precise determination of an applied 
load position at 0.1%. 

The trained network for classifying section of an applied load 
was tested for its performance using the set of load positions at 
an interval of 1 mm. It was found that most positions tested were 
classified into the correct section. The sectional error was 
satisfactorily low at 0.5% of all points tested. 
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The sub- networks corresponding to each load application in 
each section of the beam were trained using 10 equally 
distributed applied positions in each section of the beam. Training 
parameters of all three networks were fixed at the same values 
as follows. The momentum rate and learning rate were at 0.9 and 
0.7 respectively. The hidden layer comprised 10 hidden nodes 
and the error between the desired and network output (that was 
the load position) was no more than 0.001%. 



The trained networks were tested by passing the data 
obtained in 5.2 to the corresponding network. In total 399 load 
positions were tested and the result is shown in Figure 6. 

Figure 6 Determination of an applied load position using 
cascade neural network 

 
The result in Figure 6 shows that the errors at ends of the 

beam were significantly reduced compared to the result obtained 
when a single network was used to determine an applied load 
position (see Figure 4). However, the cascade networks did not 
help reducing the errors in the middle section of the beam.  

The average error obtained in the cascade approach was 
1.0%. This shows a significant reduction in error compared to 
when a single network was used where the average error of the 
entire beam length was 4.6%. However, by observation it was 
found that there were 2 odd errors in the determination of the 
section of load position before the result was cascaded to the 
fine-tuning process and resulted in unexceptionally high errors of 
over 97%. With the exclusion of the unusual errors discussed, the 
average determination error of the cascade networks was 
reduced to 0.6% of the beam length. The effect of odd sectional 
errors could be reduced by applying a fuzzy algorithm for applied 
positions closed to the boundaries between sub-sections. 

 
6. Conclusions 

The distributive tactile sensing system is an effective tool for 
identifying load parameters offering a reduction in the number of 
sensing elements and construction complexity. The work 
presented is a one-dimensional surface on which load position 
can be determined using the neural network algorithm. It was 
found that the accuracy in determining an applied load position is 
affected by the neural network training strategies. It was found 
the sensitivity of the system was the lowest when the training 
positions were selected on a random basis as can be seen from 
the determination error at an average of 11.1% for 10 networks. 
With equally pitched training positions, the error was reduced to 

positions in approximately either quarter of the beam length near 
the ends resulted in higher errors compared to when load was 
applied near the beam centre. In order to moderate such errors, 
the cascade neural network was introduced to determine load 
applied near the ends and the middle section of the beam 
separately. It was found that the cascade neural network was the 
most effective training strategy as the determination error was the 
lowest at 1.0%. 
 

4.6% of the beam length. It was found that determination of load 
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