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Abstract 
The Galerkin finite element method for unsteady two-

dimensional water flow in saturated-unsaturated soils of the 
standard head-based form according to the Richards' equations is 
presented.  The discretization of the flow domain is obtained by 
using triangular finite elements with linear shape functions. 
Unsaturated flow behavior in porous media is governed by  
nonlinear differential equation, and an iterative procedure must be 
employed for solution.  Time integration is performed by using a 
finite difference backward Euler scheme.  Fine grid spacings may 
also be required to effectively capture sharp moisture fronts, as 
well as small time step is needed to avoid the solution instability.  

 
1. Introduction 

Many Thailand's historic structures and buildings have 
suffered from surface deterioration.  Water infiltrates into these 
structures during rainy season, and then flows back during dry 
season toward surfaces where it evaporates.  This water may 
carry chemical compositions that cause severe damage to the 
structures.  In this paper, the moisture conditions are studied to 
predict the water movement in unsaturated porous media.  

In virtually all studies of the saturated and unsaturated zone, 
the fluid motion is assumed to follow the classical Richards' 
equation [1] and flow rates are calculated upon application of 
Darcy's law.  Water moves through porous media in response to 
two forces, the capillary potential gradients and the gravity. 
Problems related to two-dimensional, isothermal transient water 
transfer in unsaturated homogeneous isotropic porous media are  
highly nonlinear nature of the governing partial differential 

equation and the solutions of this equation are valid under certain 
restrictive initial and boundary conditions.  To solve for solution, 
standard iteration techniques such as Picard and Newton 
methods may be used.  Moreover, mass lumping is employed to 
improve solution convergence and stability behavior [2].  Time 
approximation is normally based on a fully implicit (backward 
Euler) scheme. 

An excellent tool for checking numerical models of 
unsaturated flow in porous media is from analytical solutions. 
However, because of the problems above, only a limited number 
of analytical solutions is available.  Moisture distribution problem 
is presented as the first example to compare the analytical 
solution with the numerical solution.  The vertical flow in soil 
column [3], is used as the second example to study vertical 
movement of water in porous media during rainfall.  A more 
complex geometry is simulated in the third example, which is a 
historic pagoda at Wat Pansat, Chiangmai [4], in order to 
evaluate and demonstrate the efficiency of the finite element 
method. 

 
2. Flow in Porous Media and Finite Element Formulation 
2.1 Governing Equation 

The unsaturated flow behavior in two-dimensional x-y 
coordinates is governed by  the differential conservation of mass, 
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with the flux q  described by Darcy's law [5], 
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3. Examples 
3.1 Steady State Moisture Distribution 

For steady state problem without gravity effect and with 
constant hydraulic conductivity, the Richards' equation reduces 
to, 

 
where  is the pressure head according to the Richards' 
equation [6], 
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For the domain and the boundary conditions as shown in Fig. 1, 
the exact solution is,  
 In the above equations,  is the specific moisture 

capacity function, 
ψθ/θ ∂∂=∗

K is the hydraulic conductivity, θ  is the 
moisture content,  denotes the vertical dimension assuming 
positive upward, and the porous medium is assumed to be 
isotropic. 
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2.2 Finite Element Formulation  
Finite element equations for determining nodal pressure 

heads can be derived from the governing differential equation 
using the Galerkin method [7,8].  These equations can be written 
in matrix form as, 
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where  is the time rate of change of the nodal pressure 
heads,  is the vector that contains unknowns of the element 
nodal pressure head components, 

{ }ψ&
{ }ψ

[ ]C  is the capacitance matrix, 
 is the hydraulic conductance matrix, and  is the load 

vector.  These matrices are given by, 
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Fig. 1  -  Finite element model and boundary conditions. 
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In the above Eq. (5a-c), [ ]N

A

 is the pressure head 
interpolation matrix,  is the pressure head gradient 
interpolation matrix, [  is the soil hydraulic conductance matrix, 

 is the gravity load vector, and  is the element area. 
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Fig. 2  -  Pressure head contours. 

  

 



The material properties are given by [9],  The finite element model in Fig. 1 consists of 441 nodes and 800 
elements.  Figure 2 shows the computed pressure head contours. 
Figure 3 shows the comparison of computed and exact solutions 
in section AA. 
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where and are the saturated and residual water contents 
of the soil, is the saturated hydraulic conductivity, and , β , 

sθ rθ

sK α
δ , and γ  are model parameters determined from laboratory 
experiments. 

The value of above parameters are = 0.287, = 0.075, 
= 1.611x10

sθ rθ

α 6, = 3.96, = 0.00944 cm/s, δ = 1.175x10β sK 6, 
and  γ = 4.74.  The initial condition is = -61.5 cm.  The 
process lasted 360 s. 

)0,z(ψ
 Section AA 
 Figure 5 shows the predicted pressure head and moisture 

content in the soil column after six minutes. Fig. 3  -  Comparative pressure distributions along section AA. 
  

3.2 Vertical Flow in Soil Column  y 
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The finite element model of the soil column as shown in Fig. 
4 consists of 451 nodes and 800 elements, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 4  -  Finite element model and boundary conditions 
for vertical flow problem.  
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a) Pressure head contours. b) Moisture head contours. 
 

Fig. 5  -  Predicted pressure head and moisture content 
for vertical flow. 

 
3.3 Moisture Content in a Pagoda 

A historic pagoda at Wat PanSat in Chiangmai is used to 
predict the propagation of the moisture content.  Figure 6 shows 

 
 



the finite element model with 4,305 nodes and 7,924 triangles 
with the boundary conditions shown in the figure.  Initially, the 
pressure head is given as -30.5 cm.  Figure 7 shows the 
predicted pressure head contours after five minutes. With the 
predicted pressure head, the moisture content can then be 

computed.  Figure 8 shows the computed moisture content at 10, 
20, 30, and 60 minutes.  The figures highlight the propagation 
behavior of the moisture content from the outer surface toward 
the pagoda interior. 
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Fig. 6  -  Finite element model and boundary conditions 
for a pagoda at Wat Pansat, Chiangmai.  

Fig. 7  -  Predicted pressure head contours of the pagoda 
after five minutes. 



4. Conclusions 

 
 

A finite element method for analysis of moisture content in 
porous media was presented.  The finite element equations were 
derived from the governing differential equation of the 
unsaturated flow behavior in two dimensions according to the 
Richards' equation.  The formulation was validated for simple 
problems that have exact solutions prior to applying to more  0.26 
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complex problems.  Finally, the formulation was evaluated by 
analyzing the moisture content propagation behavior of a historic 
pagoda in Wat Pansat, Chiangmai. 
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