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Abstract 
 A finite element method for solving inviscid high-speed 
compressible flow problems is presented.  The finite element 
equations corresponding to these flow problems were derived 
from the governing Euler equations that consist of the 
conservation of mass, momentums, and energy using the 
characteristic-based split method for the three-nodes triangular 
element.  An adaptive meshing technique was combined with the 
finite element method to improve the solution accuracy and to 
reduce the computational time as well as the computer memory.  
The efficiency of the combined method is evaluated by the 
examples of an oblique shock reflection at a wall, a Mach 2.0 flow 
in a channel with compression and expansion ramps, and a 
shock-shock interaction on a cylinder. 
 
1. Introduction 
 High-speed compressible flows normally include complex 
flow phenomena, such as shock waves, flow expansions, and 
shock-shock interactions [1].  Effects of these phenomena are 
critical in the design of high-speed vehicle structures.  These 
flows are characterized by steep solution gradients that need 
robust analyses and computational techniques as well as dense 
meshes to obtain good resolution of flow behaviors.  In the past 
decades, several finite element algorithms were developed to 
alleviate the computational effort due to complex flow filed, such 
as the Taylor-Galerkin [2], the Petrov-Galerkin [3], the least-
squares [4], the cell-centered upwinding algorithms [5] and the 
characteristic-based split algorithm [6]. 

The characteristic-based split algorithm or the “CBS 
algorithm” is selected for solutions in this paper due to its 
capability to provide flow solution accuracy for most of the fluid 

dynamics problems.  An adaptive meshing technique is combined 
with the CBS algorithm to improve the finite element solution 
accuracy and to reduce the computational time as well as the 
required computer memory.  The adaptive meshing technique is 
applied to generate small elements in the regions of large change 
in the solution gradients to increase the solution accuracy,  while 
larger elements are generated in the other regions.  The paper 
starts by explaining the theoretical formulation for inviscid high-
speed compressible flow analysis and the algorithm procedure. 
The basic idea behind the adaptive meshing technique is then 
described.  Finally, the combined procedure is evaluated by 
analyzing the three examples of high-speed compressible flows; 
an oblique shock reflection at a wall, a Mach 2.0 flow in a channel 
with compression and expansion ramps, and  a shock-shock 
interaction on a cylinder.  The predicted solutions are compared 
with the exact solutions, and the experimental results. 
 
2. Governing Differential Equations 

The Euler equations for inviscid compressible flow are 
governed by the conservation of mass, momentums and energy.  
These equations, in two dimensions, are written in the 
conservation form as,  
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The vector { }U  contains the conservation variables defined by, 

 { }TU   ερρρρ vu=     (2) 

where ρ is the fluid density, u and v  are the velocity 
components in the x and y directions, respectively, and ε is the 
total energy of the fluid.  The vectors { }E  and { }F  consist of 
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inviscid fluxes in the x and y directions, respectively.  These 
inviscid flux vectors are given by,  

 { }TE   upuvupuu ++= ερρρρ 2   (3) 

and 

 { }TF   vpvpvvuv ++= ερρρρ 2   (4) 

where p  is the pressure.  The total energy consists of the 
internal energy and the kinetic energy defined by, 

 ε ( )22

2
1 vue ++=     (5) 

The internal energy is assumed to satisfy the equation of state 
that can be written in the form, 

 e  ( )1−
=

γρ
p     (6) 

where γ  is a specific heat ratio. 
 
3. Computational Procedure 
 The basic concept of the CBS algorithm is to use the 
characteristic-Galerkin process to establish recurrence relations 
for temporal discretization, and the method of weighted residuals 
with Galerkin’s criteria is used for spatial discretization for deriving 
the finite element equations. 
 
3.1 The temporal discretization 

The CBS algorithm for the compressible flow analysis 
consists of four steps.  In the first step, the intermediate values of 
conservative variables of the momentum equations are calculated 
by omitting the pressure gradient terms.  In the second step, the 
continuity equation is solved to determine the density changes in 
the fluid.  In the third step, the conservative variables of the 
momentum equations are updated.  Finally, the energy equation 
is solved for the total energy and the pressure is calculated by 
using the equation of state.  These four steps in the fully explicit 
form can be written as follows [7], 

 
Step 1:  Solve the intermediate momentum equations, 
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where iU are the mass fluxes.  
 
 
 
 

Step 2: Solve the continuity equation,  
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where θ  is between 0.5 and 1. 
 
Step 3: Solve the momentum correction equations, 
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Step 4: Solve the energy equation, 
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3.2 The spatial discretization  
 The three-nodes triangular element is used in this study. The 
element assumes linear interpolation for the variable U , E , F  
and p  as,  

U = αα U)y,x(N   (11a) 
E = αα E)y,x(N   (11b) 
F = αα F)y,x(N   (11c) 
p = αα p)y,x(N   (11d) 

where α = 1,2,3 and αN  is the element interpolation functions. 
 The method of weighted residuals with Galerkin’s criteria is 
employed to discretize the finite element equations by multiplying 
Eqs. (7)-(10) with the weighting function, αN , and performing 
integration by parts using the Gauss theorem to yield the element 
equations in the steps below,   
 
Step 1:  Solve the intermediate momentum equations, 
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Step 2: Solve the continuity equation, 
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Step 3: Solve the momentum correction equations, 
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Step 4: Solve the energy equation, 
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In above equations, the element matrices can be written in the 
integral form as,   
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 An artificial diffusion is also needed in the algorithm to 
reduce oscillation of the solutions especially near the shock wave.  
The second derivative of pressure [8] is selected to contribute the 
artificial diffusion into nodal quantities.  These nodal artificial 
diffusions are determined from,  

[ ]












∆
− ++

t
UUM
nn

s
11

= [ ]{ }n
ee UKp

p
cV

hC 23 ∇
+     (17) 

where 1+n
sU  is the modified  solution at time step +n 1 after 

adding artificial diffusion, 1+nU  is the solution at time step 

+n 1, eC  is the user-specified coefficient normally varies 
between 0.0 and 2.0, h  is the element size, V  is the absolute 
velocity, c  is the speed of sound, p  is the average pressure,  

e
p2∇  is the second derivative of pressure over an element. 

 The fully explicit form of CBS algorithm is conditionally 
stable.  The permissible time step is governed by,  

 t∆  =   
cV

h
+

σ  (18) 

where σ is the Courant number (0<σ≤ 1). 
 
4. Adaptive Meshing Technique 

For high-speed compressible flows, the flow properties, such 
as the density changes abruptly across the shock waves.  Small 
elements are thus needed along to shock waves to capture 
accurate shock wave resolution.  As small elements must be 
placed in the region where changes in the density gradients are 
large, thus the second derivatives of density at a point with 
respect to global coordinates x and y are needed.  Using the 
concept of principal stresses determination from a given state of 
stresses at a point, the principal quantities in the principal 
directions X and Y where the cross-derivatives vanish are 
determined.  The maximum principal quantities are then used to 
compute the proper element size ih  by requiring that the error 
should be uniform for all elements, 
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This value is used to compute proper element size from the 
condition, 

 == maxminii hh λλ 22 constant (20) 

 In the above Eq. (20), maxλ  is the maximum principal quantity 
for all elements and minh  is the minimum element size specified 
by users. 
 
5. Results 
 To demonstrate the capability of the combined adaptive 
meshing technique and the characteristic-based split method for 
increasing the flow solution accuracy, three simulations of  the 
steady-state high-speed compressible flows are used.  (1) an 
oblique shock reflection at a wall, (2) a Mach 2.0 flow in a 
channel with compression and expansion ramps, and (3) a shock-
shock interaction on a cylinder. 



 
5.1  Oblique shock reflection at a wall 
 The problem statement of an oblique reflection at a wall is 
described in Fig. 1.  The Mach 2.9 and 2.387 flows enter through 
the left and the top boundaries of computational domain resulting 
in an oblique shock from the top-left corner.  This shock incidents 
and reflects at a wall as highlighted in the figure.  The procedure 
starts by creating a relatively uniform mesh as shown in Fig. 2(a) 
that consists of 4,920 elements.  The fluid analysis is then 
performed to generate the corresponding solution such as the 
density contours as shown in Fig. 2(b).  The figure shows the 
computed shock is not sharp because the elements along the 
shock lines are not small enough.  This flow solution is then used 
to generate an adaptive mesh to cluster small elements in the 
regions of sharp changes of the density gradients, and at the 
same time, to use larger elements on the other regions.  The fluid 
analysis is then performed again to yield a more accurate 
solution.  The entire process is repeated to generate the third 
adaptive mesh consisting of 19,882 elements and the 
corresponding solution as shown in Figs. 3(a)-(b), respectively.  
Figures 4a)-(b) show the predicted density and pressure 
distributions at y = 0.25 as compared to with the exact solutions. 
 
 
 
 
 
 
 
 

Fig. 1  Problem statement of an oblique shock reflection at a wall. 
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(b) 
Fig. 2  An oblique shock reflection at a wall: (a)-(b) Initial mesh 

and the corresponding density contours. 
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 (b) 
Fig. 3   An oblique shock reflection at a wall: (a)-(b) Third 

adaptive mesh and the corresponding density contours. 
 
 
 
 
 
 
 
 
 
 
 (a) 
 
 
 
 
 
 
 
 
 
 
  (b) 
Fig. 4  Comparative solutions at y  = 0.25 for an oblique shock 

reflection at a wall: (a) density distribution; (b) pressure 
distribution. 

 
5.2 Mach 2.0 flow in a channel with compression and 
expansion ramps 
 The problem statement of a Mach 2.0 in a channel with 
compression and expansion ramps and the sketch of flow 
behavior are described in Fig. 5.  The flow creates an oblique 
shock from the compression ramp that impinges at the upper wall 
resulting in a reflecting shock.  The reflecting shock also 
intersects with the Mach waves generated from the expansion 
corner.  The combined characteristic-based split method and 
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adaptive meshing technique starts from generating a relatively 
uniform mesh such as that shown in Fig. 6(a) with 5,578 
elements.  Fig. 6(b) shows the density contours of the 
corresponding flow solution obtained from the finite element mesh 
in Fig. 6(a).  The figure shows that the computed shock waves 
are not sharp and mach waves resolution around expansion 
corner is not good due to the element sizes in these regions are 
too large. With such the solution, a new adaptive mesh was then 
constructed and the flow analysis was performed again.  The 
same process was repeated for three times.  The third adaptive 
finite element model consisting of 26,628 elements and the 
corresponding density contours are shown in Fig. 7(a)-(b), 
respectively.   
 
 
 
 
 
 
 
Fig. 5   Problem statement of a Mach 2.0 in a channel with 

compression and expansion ramps 
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(b) 
Fig. 6   Mach 2.0 in a channel with compression and expansion 

ramps: (a)-(b) Initial mesh and the corresponding density 
contours. 
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(b) 

Fig. 7   Mach 2.0 in a channel with compression and expansion 
ramps: (a)-(b) Third adaptive mesh and the corresponding 
density contours. 

5.3 Shock-shock interaction on a cylinder 
 The problem highlights the shock-shock interaction on a 
cylinder.  The mainstream Mach number is 8.03 and the disturbed 
stream Mach number is 5.25 at angle of 12.5o.  The problem 
statement of the flow is shown in Fig. 8.  This represents a 
situation in which an oblique shock interacts with bow shock in 
front of the cylinder.  The adaptive finite element model consisting 
of 40,359 elements is shown in Fig. 9(a).  The corresponding 
pressure and Mach contours are presented in Figs. 9(b) and (c), 
respectively.  Figure. 10 shows the predicted pressure on the 
surface of the cylinder comparing to the experimental data [9].  
The predicted and experimental pressures are normalized by the 
undisturbed flow (no shock interaction) stagnation pressure.  The 
figure shows good agreement of the pressure distributions and 
excellent agreement of the peak pressure locations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8  Problem statement of a shock-shock interaction on a 

cylinder 
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 (a) (b) (c) 
Fig. 9  Shock-shock interaction on a cylinder: (a) adaptive mesh 
 (b)-(c) the corresponding pressure and Mach contours. 
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 Fig. 10  Comparative pressure distributions along cylinder 

surface. 
 
6. Conclusion 
 The finite element method based on the characteristic-based 
split algorithm for analysis of two-dimensional inviscid high-speed 
compressible flow was presented.  The method was combined 
with an adaptive meshing technique to improve the flow solution 
accuracy and to reduce the computational time.  The technique 
generates an entirely new mesh based on the solution obtained 
from a previous mesh.  The new mesh consists of clustered 
elements in the regions with large change in the solution 
gradients to provide high solution accuracy.  At the same time, 
larger elements are generated in the other regions to reduce the 
computational time. Three examples of high-speed compressible 
flows were presented to assess the effectiveness of the combined 
method.  These examples are an oblique shock reflection at a 
wall, a Mach 2.0 flow in a channel with compression and 

expansion ramps, and a shock-shock interaction on a cylinder.  
These three examples demonstrate the combined method can 
provide high solution accuracy with reduced computational time 
and memory for analysis of high-speed compressible flow 
problems. 
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