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Abstract 
This paper presents two finite element schemes for solving 

conjugate heat transfer problems, where heat conduction in a 
solid is coupled with heat convection in viscous fluid flow.  For 
solving viscous incompressible thermal flow in fluid region, the 
Streamline Upwind Finite Element method and the Streamline 
Upwind Petrov-Galerkin method are selected, while heat 
conduction in solid region is solved using the standard Galerkin 
method.  The methods use the three-node triangular element with 
equal-order interpolation functions for all the variables of the 
velocity components, the pressure and the temperature.  The 
main advantage of the presented approach is to consistently 
couple heat transfer along the solid-fluid interface.  Three test 
cases, conjugate Couette flow problem in parallel plate channel, 
counter-flow in heat exchanger, and conjugate natural convection 
in a square cavity with a conducting wall, are selected to evaluate 
the presented algorithms.   
 
1. Introduction 

Conjugate heat transfer problems are encountered in many 
practical applications, where heat conduction in solid region is 
closely coupled with heat convection in an adjacent fluid.  There 
are many engineering areas where conjugate heat transfer should 
be considered such as heat transfer enhancement with a finned 
surface, design of thermal insulation, cooling of nuclear reactor, 
design of solar collector, etc.  Most of the computational studies 
in this research area, however, are based on finite difference and 
finite volume methods [1].  Numerous publications with 

computational results show that these methods can perform very 
well on the problems of interest, but some assumptions on heat 
transfer coefficients are needed to compute the temperatures 
along the solid-fluid interface.  Furthermore, the determination of 
unknown temperatures and heat fluxes at the solid-fluid interface 
is done in an iterative way, usually through the use of the artificial 
heat transfer coefficient. 

For the finite element method, some researchers proposed 
computational procedure for conjugate heat transfer problems.  
Misra and Sarkar [2] use the standard Galerkin formulation and 
solve the continuity, momentum and energy equations 
simultaneously.  Cesini and Paroncini [3] use the streamfunction-
vorticity formulation with segregated solution algorithm. 

In this paper, two finite element schemes known as the 
Streamline Upwind Finite Element method [4] and Streamline 
Upwind Petrov-Galerkin method [5-6] are selected for the analysis 
of conjugate heat transfer problems.  Both methods use equal-
order interpolation functions for the velocity components, the 
pressure and the temperature, and then solved them separately 
for further improving the computational efficiency.  The method 
also calculates the temperatures and the heat fluxes along the 
solid-fluid interface directly without the use of the assumed heat 
transfer coefficient.  
 
2.  Theoretical formulation and solution procedure 
2.1 Governing equations 

The governing equations for conjugate heat transfer 
problems consist of the conservation of mass or the continuity 



2.2.2 Streamline Upwind Petrov-Galerkin method equation, the conservation of momentums in x  and  
directions and the conservation of energy. 

y
In Streamline Upwind Petrov-Galerkin method, a modified 

weighting function, W , is applied to the convection terms for 
suppressing the non-physical spatial oscillation in the numerical 
solution.  The modified weighting function is given by Zienkiewicz 
[6], 
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where α  is calculated for each element from, 
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    (1d) The basic idea of both the solution algorithms presented in 

this paper is to use the two momentum equations for solving the 
velocity components, use the continuity equation for solving the 
pressure, and use the energy equation for solving the 
temperature in solid and fluid regions.   

where  and  are the velocity components in the u v x  and  
direction, respectively; ρ is the density,  is the pressure, 

y
p µ is 

the viscosity, gy is the gravitational acceleration constant, β is the 
volumetric coefficient of thermal expansion, T  is the reference 
temperature for which buoyant force in the y-direction vanishes, 

 is specific heat,  is the coefficient of thermal conductivity 
and  is the internal heat generation rate per unit volume.  
Equation (1d) can also be used for solving heat conduction in 
solid by setting both the velocity components,  and , as zero. 
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2.2.3  Discretization of momentum and energy equations 

The three-nodes triangular element is used in this study.  
The element assumes linear interpolation functions for the 
velocity components, the pressure, and the temperature as 
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2.2 Finite element formulations 
2.2.1 Streamline Upwind Finite Element method where φ  is transport property (u, v, p and T) and Ni are the 

element interpolation functions.  For the Streamline Upwinding Finite Element formulation, a 
special treatment for the convection terms is incorporated.  These 
terms are approximated by a monotone streamline upwinding 
formulation to be used with the triangular element [4].  In this 
approach, the convection term is first written in the streamline 
coordinates as, 
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To derive the momentum and the energy equations that 
correspond to the Streamline Upwind Finite Element scheme and 
the Streamline Upwind Petrov-Galerkin scheme, the Galerkin 
method of weighted residuals is employed by multiplying Eqs. 
(1b-d) with the weighting function, Ni, except for the convection 
terms which the special treatment as described in the above 
sections is used.  Integration by parts are then performed using 
the Gauss theorem to yield the element equations in the form, 

where  and  are the velocity and the gradient along 
the streamline direction, respectively.  These terms are evaluated 
by a streamline tracing method, which keeps track of the direction 
of the flow within the element. 

sU s/ ∂∂ Momentum equations, 

 [ ]{ }uA { } { }upx RR +=                  (6a) 

 [ ]{ }vA { } { } { }gyvpy RRR ++=     (6b)  
  



Energy equation, 

 [ ] { }TAT { } { }T
Q

T RR +=                        (7) 

where the coefficient matrices [ ] and  contain the 
known contributions from the convection and diffusion terms.  
Details of these matrices can be found in ref [4]. 

A [ ]TA

 
2.2.4 Discretization of pressure equation 

To derive the pressure equation, the method of weighted 
residuals is applied to the continuity equation, Eq. (1a).  Because 
the pressure term does not appear in the continuity equation, the 
relation between velocity components and pressure are thus 
required.  Such relations can be derived from the momentum 
equations, Eqs. (6a-b) as,  

an be derived from the momentum 
equations, Eqs. (6a-b) as,  
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where and  are the surface integral terms and the source 
term due to the buoyancy.    
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 By applying Eqs. (8a-b) into the continuity equations, the 
pressure equations can be written in matrix form with unknowns 
of the nodal pressure as 

 [ ] { }pK { } { } { }bvu FFF ++=       (9) 

where the details for these element matrices can also found in ref 
[4]. 

The above element equations are assembled to yield the 
global equations for the velocity components, the temperature 
and the pressure equations.  Appropriated boundary conditions 
are then applied prior to solving for the new velocity components, 

temperature and pressure values.   
 
2.2.5 Computational procedure 

The computational procedure starts from assuming initial 
nodal velocity components, pressures, and temperatures.  The 
new nodal temperatures are computed using Eq. (7).  The new 
nodal velocity components and pressures are then computed 
using Eqs. (6a-b) and (9), respectively.  The nodal velocity 
components are then updated using Eqs. (8a-b) with the 
computed nodal pressures.  This process is continued until the 
specified convergence criterion is met.  Such segregated solution 
procedure helps reducing the computer storage because the 
equations for the velocity components, the pressure, and the 
temperature are solved separately. 
 
3. Results 

In this section, three example problems are presented.  The 
first example, conjugate Couette flow problem in parallel plate 
channel, is chosen to evaluate the finite element formulations and 
to validate the developed computer programs.  The second and 
the third examples, counter-flow in heat exchanger and conjugate 
natural convection in a square cavity with a conducting wall, are 
used to illustrate the capability of the presented schemes in the 
analysis of conjugate heat transfer problems.  
 
3.1 Conjugate Couette flow problem in parallel plate channel 

The first example for evaluating the finite element 
formulations and validating the developed computer programs is 
the problem of conjugate Couette flow problem in parallel plate 
channel.  As shown in Fig. 1, the upper wall moves at a constant 
velocity and the other wall is stationary conducting solid.  The 
other surface of the conducting solid is maintained at a constant 
temperature that is higher than the constant temperature of the 
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Fig. 1. A conjugate Couette flow problem in parallel 
     plate channel. 
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Fig. 2.  Comparison of conjugate benchmark solutions for 
Couette flow problem. 
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opposing channel wall.  The numerical results are compared with 
the analytical solution as shown in Ref. [7].  Fig. 2 shows that the 
computational results from both finite element schemes 
demonstrate excellent agreement with the analytical solution for 
varying conductivity ratios, fs kkK = , where ks and kf are 
solid and fluid heat conduction coefficient respectively.  The 
numerical results of the temperatures from the Streamline Upwind 
Petrov-Galerkin method and the Streamline Upwind Finite 
Element method are compared within 0.04% of the analytical 
solutions. 
 
3.2  Conjugate counter flow heat exchanger 

To validate the numerical schemes with the second test 
example, a conjugate counter flow heat exchanger problem is 
selected.  This heat exchanger consists of two parallel flow 
passages with widths  and  separated by a solid plate with 
thickness of a  as shown in Fig. 3.  The outer walls of the flow 
passages are assumed to be adiabatic.  The same properties 
and uniform inlet velocity and temperature profiles are assumed 
for the hot and cold fluids.  Parameters adopted in the 
computation are as follows, geometrical sizes  =  =  = 
0.1 and  = 1.0, the flow in upper channel parameters = 0.2, 

= 800, = 133.33 and 

selected.  This heat exchanger consists of two parallel flow 
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thickness of a  as shown in Fig. 3.  The outer walls of the flow 
passages are assumed to be adiabatic.  The same properties 
and uniform inlet velocity and temperature profiles are assumed 
for the hot and cold fluids.  Parameters adopted in the 
computation are as follows, geometrical sizes  =  =  = 
0.1 and  = 1.0, the flow in upper channel parameters = 0.2, 
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1T1T r = 0.75, the flow in lower channel 
parameters = 0.1, T = 300, = 66.67 and 2u 2 Re Pr = 0.75, 
conduction ratio, K = 5.  The finite element model consisting of 

1,763 nodes and 3,360 triangles, as shown in Fig. 4, is used in 
this study.  Fig. 5 shows the predicted temperature contours in 
entire domain.  The predicted temperature distributions at 

2/Lx =  from both presented schemes are compared with the 
results from Chen and Han [8] as shown in Fig. 6.  The figure 
shows good agreement of the solutions.  
 
3.3 Conjugate natural convection in a square cavity with a 
conducting wall 
 To further evaluate the effectiveness of the presented 
schemes, the problem of conjugate natural convection in a 
square cavity with a conducting wall as shown in Fig. 7, is 
selected.  The cavity is heated at the left side (solid wall) and 
cooled at the right side, all other boundaries are insulated.  Fig. 8 
shows the finite element model that consists of 2,009 nodes and 
3,840 triangles.  Figs. 9 and 10 show the predicted streamline 
and temperature contours for different thermal conductivity ratios 
of K = 1 and 10 at Grashof numbers of 103 and 105, respectively.  
The temperature and the heat flux distributions along the solid-
fluid interface with the variation of conduction ratio, K, are shown 
in Figs. 11(a) and (b), respectively.  Table 1 compares the 
predicted average Nusselt numbers at interface, 0=xNu .  The 
computational results are compared with the results from 
Hribersek [9] which show good agreement of the solutions of 
average Nusselt numbers for both temperature and heat flux. 
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Fig. 3. A conjugate counter flow heat exchanger. 

Fig. 4. Finite element model for conjugate counter flow 
 heat exchanger. 

Fig. 5. Predicted temperature contours for a conjugate 
 counter flow heat exchanger. 

Fig. 6.  The temperature profiles at 2/Lx =  for a conjugate 
 counter flow heat exchanger. 
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Fig. 10. (a) Streamline contours for K  = 10, (b) Temperature contours for K  = 1 and 
 (c) Temperature contours for K  = 10, all at Gr  = 105. 

Fig. 9.   (a) Streamline contours for K  = 10, (b) Temperature contours for K  = 1 and 
 (c) Temperature contours for K = 10, all at Gr  = 103. 

(a) (b) (c) 

Fig. 7.  Conjugate natural convection problem. 
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Fig. 8  Finite element model for the conjugate 
 natural convection problem. 
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Fig 11.  (a) Interface temperatures and (b) Interface heat fluxes, all at Gr  = 105. 
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Conductivity ratio fs kkK =   1  5  10  

Gr                   Average Nusselt numbers along interface ( % difference from Ref. [9] ) 

Table 1  Variation of the overall Nusselt numbers.

 103     Hribersek [9]  0.87       1.02          1.04  
103   SUPG               0.87 (0.0%)         1.02 (0.0%) 1.04 (0.0%) 
103   SUFE               0.85 (2.29%)         1.03 (0.98%) 1.04 (0.0%) 
  
105      Hribersek [9] 2.08               3.42               3.72 
105       SUPG               2.07 (0.48%)       3.39 (0.87%) 3.67 (1.34%) 
105       SUFE               2.04 (1.92%)       3.30 (3.51%) 3.60 (3.22%) 
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4. Conclusions 
 Two finite element methods for conjugate heat transfer 
problems are presented.  The methods use three-node triangular 
element for the analysis of viscous incompressible thermal flow in 
the fluid region and heat transfer in the solid region. The 
convection terms in the momentum and the energy equations are 
treated by the Streamline Upwind Finite Element method and the 
Streamline Upwind Petrov-Galerkin method to suppress the non-
physical spatial oscillation in the numerical solutions.  The 
corresponding finite element equations are derived and 
corresponding computer programs have been developed.  The 
test cases highlight the benefit of the finite element method for 
the analysis of conjugate heat transfer problems that can 
compute the temperatures along the solid-fluid interface directly. 
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