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Abstract 
This paper presents a finite element method for analyzing 

two-dimensional linear elastic fracture mechanics problems with 
cracks presented in material bodies.  Stress intensity factor is 
used as the parameter to characterize the severity of the stresses 
near the crack tip.  The domain integral method, for which all 
relevant quantities are integrated over any arbitrary element area 
around the crack tip, is utilized as the stress intensity factor 
solution scheme.  The six-node triangular elements are placed 
around the crack tip.  An adaptive remeshing technique is 
implemented for automatically generating small elements in the 
regions with high stress gradients to improve solution accuracy.  
Many benchmark problems are analyzed to demonstrate the 
efficiency of the numerical solution scheme.  
 
1. Introduction 

In linear elastic material behavior, Stress Intensity Factor, 
SIF, is the most widely used parameter characterizing the 
intensity of stresses near a crack tip.  Many numerical 
procedures have been developed to estimate the SIF such as 
stress and displacement matching, contour integration and virtual 
crack extension [1], etc.  One efficient method that has many 
advantages is the energy domain integral.  Originally formulated 
by Shih, et. al. [2], this approach is remarkably versatile because 
it can be applied to both quasistatic and dynamic problems with 
elastic, plastic, or viscoplastic material responses, as well as 
thermal loading.  Moreover, it can numerically be employed to 
efficiently calculate the other two important elastoplastic crack tip 
parameters; J and T*-integral which based respectively on the 
deformation and incremental theory of plasticity [3].     

In this paper, the domain integral method is used to 
calculate the energy release when a crack grows and convert it 
to the SIF by relations between stresses and energy.  Adaptive 

remeshing technique and crack tip element in which mid-side 
nodes near the tip displaced from its nominal positions to quarter 
points [4] are also implemented to enhance the solution accuracy.  
Several problems have been analyzed to demonstrate the 
algorithm.    
 
2. The energy domain integral 

For stable crack growth in a two-dimensional body having a 
line crack along the 1x  axis, the energy release per unit crack 
advance is, 
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where W  is the stress work density, ijσ  and iu  are 
components of the stress and displacement along the ix  axis, in  
is the unit vector normal to Γ  contour and dC  is the 
infinitetesimal arc length as depicted in Fig. 1. 
 

 
 
 
 
 
 
 

 
 

Fig. 1. Closed contour −+ ++−= CCCC 1 Γ  enclosing a 
simply connected region A  

 
In the absence of thermal strain, body force and crack face 
traction, Eq. (1) can be rewritten in the form, 
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where Γ−++= −+ CCCC 1  is the closed curve, 1q  is a 
sufficiently smooth function in the area enclosed by C  which is 
unity on Γ  and zero on 1C , and jm  is the components of 
outward normal unit vector as shown in Fig. 1.  By applying the 
divergence theorem to (2), 
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where A  is the area enclosed by C .  Invoking the equilibrium 
equation, the domain expression for the energy release rate is, 
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The function 1q  can be interpreted as a unit translation on Γ  in 
the 1x  direction while keeping the material points on 1C  fixed.  
According to the vanishing of Γ around the tip, this can be 
viewed as the growing of the crack. 
 
3.  Stress intensity factor 

In linear elastic material response, the stress intensity factor 
in opening mode can be computed from the energy release rate 
by the expression [1], 

 
EJK I ′=                               (5) 

 

where 
ν-1
E E,E =′  for plane strain and plane stress case 

respectively, E is the modulus of elasticity, and ν  is the 
Poisson’s ratio. 

 
4. Finite element formulation for the domain integral method 

For the six-node isoparametric element, the coordinates, 
displacements, and a smooth function are, 
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where KN  are the shape functions, iKX  are the nodal 
coordinates, iKU  are the nodal displacements and 1IQ  are the 
nodal values of the smooth function varying between 1 and 0.  
Using Eq. (6) and (8) and the chain rule, the spatial gradient of 

1q  is, 
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where 
j

k
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 is the inverse Jacobian matrix.  

For 22×  Gaussian integration, the energy release rate 
expression in Eq. (4) is, 
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where all quantities are calculated at the 4 Gauss points with pw  
as their respective weights and t is the specimen thickness.  
 
5. Crack tip elements and the smooth function 

Fig. 2 shows elements and finite element mesh on the 
domain used in this scheme.  In this paper, the six-node rosette 
elements which the mid-side nodes near a tip located on the one-
fourth of their sides from the tip are placed around the crack tip.  
These element can improve the solution because they have the 
same r1  singularity of displacement solutions as the exact 
solution does at the tip.  The other elements out of this rosette 
are standard six-node isoparametric triangular elements. 
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 According to Shih, et. al. [2], the simple pyramid function as 
depicted in Fig. 3 is utilized as the smooth function which is unity 
at the crack tip and varies to zero on the edges of the domain.  
The base of this pyramid smooth fuction which coincides with the 
square mesh surrounding the tip is also shown in the figure.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A smooth function on integrated domain 
 
6.  Adaptive remeshing technique 

The adaptive remeshing technique generates an entirely 
new mesh based on the solution obtained from the previous 
mesh. The technique generates small elements in the regions 
with large change in the stress gradients to increase the analysis 
solution accuracy.  At the same time, larger elements are 
generated in the other regions where the stress is nearly uniform 
to reduce the computational time and the computer memory.  The 
adaptive remeshing procedure thus consists of two main steps: 
the computation of proper element sizes and the generation of a 
new mesh for the entire domain.  

 
6.1 Element sizes   

To determine proper element sizes at different locations in 
the domain, the solid mechanics concept for determining the 
principal stresses from a given state of stresses at a point is 
employed.  Because small elements must be placed in the region 
where large changes in the stress gradients, such as the von 
Mises stress σ , occur.  Thus the second derivatives of the von 
Mises stress at a point with respect to global coordinates 1x  and 

2x  are needed to compute.  Then the principal quantities in the 
principal directions 1X  and 2X  where the cross derivatives 
vanish are determined, 
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The maximum principal quantities are then used to compute the 
proper element size, ,hi  by requiring  that the error should be 
uniform for all elements, 
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maxλ  is the maximum principal quantity for all elements and  
minh  is the minimum element size specified by users.  

 
6.2 Mesh regeneration   

The mesh regeneration with adaptive remeshing technique 
is implemented based on the Delaunay triangulation and mesh 
refinement [5].  The main idea is to construct a new mesh over 
the background mesh (mesh from the previous step).  Therefore, 
the new mesh consists of small elements in the regions with 
large change in solution gradients and large elements in the other 
regions where the change in solution gradients in small.  The 
capability of such adaptive remeshing technique will be  
demonstrated by benchmark examples.  

 
7.  Algorithm evaluation 

Several examples have been used to demonstrate the 
efficiency of the combined domain integral, the finite element 
method, and the adaptive remeshing technique.  The examples of 
a single edge cracked plate, a compact tension specimen and a 
center cracked plate are used to determine the stress intensity 
factor in the opening mode under the plane strain condition.   

 
7.1 The single edge cracked plate   

The geometry of the single edge cracked plate and its final 
adaptive mesh are shown in Fig. 4.  The stress intensity factor 
can be calculated from [6], 
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The final adaptive mesh consists of 444 triangles and 931 nodes.  
The computed stress intensity factor from this adaptive mesh is 
2.366 comparing to 2.363 from Eq. (13) with the difference of 
0.127% 
 
 
 

 
 
 
 

 
 

Fig. 4. Problem statement and the final mesh of the single edge 
cracked plate. 

 
7.2 The compact tension specimen    

The geometry of the compact tension specimen and its final 
adaptive mesh are shown in Fig. 5.  The final adaptive mesh 
consists of 1,396 triangles and 2,939 nodes.  The stress intensity 
factor can be calculated from [7],  
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where the thickness 25.4t =  mm.  The computed stress 
intensity factor from the adaptive mesh is 28.599 comparing to 
27.804 from Eq. (14) with the difference of 2.859% 
 
 
 

 
 
 
 

 
 

Fig. 5. Problem statement and the final mesh of the compact 
tension specimen. 

 
7.3 The center cracked plate  

The geometry of the center cracked plate and its final 
adaptive mesh are shown in Fig. 6.  The plate has an initial crack 
length 1002a =  units, and the thickness 1t =  unit.  The stress 
intensity factor for this problem was derived [8] in closed-form as, 
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The final adaptive mesh consists of 1,254 triangles and 2,580 
nodes.  The computed stress intensity factor from this adaptive 
mesh is 16.7133 comparing to 16.7192 from Eq. (15) with the 
difference of 0.04% 
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Fig. 6. Problem statement and the final mesh of the center 
cracked plate. 

 
7.4 Conclusions 

Domain integral was combined with the finite element 
method and the adaptive remeshing technique for analysis of 
linear elastic fracture mechanics problems.  The concept of the 
domain integral and its smooth function for two-dimensional 
geometry were explained.  The finite element method using the 
six-node triangular elements was described.  These triangular 
elements with mid-side nodes displaced from their nominal 
position to a quarter point of the crack tip were employed to form 
up a circular zone surrounding the crack tip for providing accurate 
solution.  The solution accuracy was further enhanced by 
incorporating an adaptive remeshing technique.  The technique 
places small elements around the crack tips and in the regions 
with large change of stress gradients for solution accuracy.  At 
the same, larger elements are generated in the other regions to 

minimize the total number of unknowns and the computational 
time.  

The efficiency of the combined procedure was demonstrated 
by examples for determining the stress intensity factor.  These 
examples demonstrate the capability of the combined adaptive 
remeshing technique with domain integral method for analysis of 
fracture mechanics problems effectively.   
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