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Abstract
The problems on acoustics are generally solved via the

wave equation in particular those related to the performance of a
Helmholtz-resonator silencer. In the present paper, an alternative
approach has been suggested. The sound propagating into the
cavity of the Helmholtz resonator behaves in a manner analogous
to an oscillation of a single-degree-of-freedom (SDOF) system.
The air column in the connector of the resonator can be
envisaged as a single mass of the system. The results obtained
from this methodology are compared to those based on the wave
equation and those from the experiment. The comparison is
rather promising. This approximate method can be used for the
preliminary study of the Helmholtz silencer

1. Introduction
Plane wave propagated along the longitudinal axis of a duct

can be described by the acoustic linear wave theory. The
assumption of plane wave traveling in a viscous stationary
medium as in the case of a duct installed with a single Helmholtz
resonator-type silencer is valid to the extent that the wavelength
of the sound is very much longer than the cross-sectional
dimension of the duct. Davis et al. has performed some rigorous
calculations and experiments on silencers with the single
resonators of different types based on the linear wave theory[1].
In general, the sound propagation in any fluid exists in the way
that satisfies the wave equation and the imposed boundary
conditions. However, in modeling the acoustic behavior of a fluid
region which is small if its principal dimensions are very much
less than an acoustic wavelength, it is acceptable to define an
equivalent mechanical system to replace the acoustic system[2].
The analysis of this single-degree-of-freedom(SDOF) oscillatory
system has been employed in this paper to study the frequency
response and to estimate the sound transmission characteristic of
a single Helmholtz resonator silencer. The results of the study

are then compared with the ones from experiments and the linear
wave theory.

2. Frequency response
A silencer composed of a single Helmholtz resonator, which

is mounted on one side of a duct terminating with the anechoic
end, is depicted in Fig.1. The fluid column of effective length le
and cross-sectional area S in the connector moves as a whole

Fig.1 Model of lumped mass in a silencer

and provides the lumped mass element. A volume of fluid of
magnitude V which is alternately compressed and expanded by
the movement of the fluid in the connector, provides the stiffness
of the element. At the opening to the main duct, there is a
radiation of sound into the surrounding medium leading to the
dissipation of acoustical energy and providing the damping
element. Figure 2 describes this oscillatory lumped mass as a
viscously damped spring-mass system excited by a harmonic
force F. The differential equation of motion can then be written as
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where M is a mass, C the damping coefficient and K the spring
stiffness. The expressions for M, K and C can be derived as
follows

Fig.2 Single-degree-of-freedom (SDOF) system

:- for the inertial term, the mass of fluid column in the connector
is given by

eoSlM ρ=                               (2)

where effective length le [2]equals to the length of the connector
plus S1/2/3.
:- for the stiffness term , the force exerted on the column of fluid
by a pressure change dp is given by means of compressibility
and isentropy relations by
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where ρo , po are the density and pressure of fluid in duct, γ the
specific heat constant, and c the sound speed. Therefore the
spring stiffness is given by
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:- for the dissipation term, starting similarly as above, the force is
given via energy and kinematics relations by
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where ω is the angular frequency of the excitation, λ the

wavelength and k the wave number equals to 
)( 21 Mac −

ω
,

in which Ma is the Mach number[3]. Hence the damping
coefficient can be written as
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After substituting M, C, and K equation (1) becomes
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Equation (5), by letting x=Sξ, and replacing F by pS, can be
reduced to
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If the harmonic excitation pressure p is written as tjep ω , then
the volume velocity x&  will also be harmonic and is given by

)( ψω−jqe , where p and q  denote the corresponding

amplitudes, t the time, ψ the phase angle, and 2
1
1)(−=j . After

their substitution into eq(6), the characteristic acoustic impedance
of the resonator can be obtained as









−+=

ω
ρωρωρ

π V
c

S
ljkZ oeoo

2

2
            (7)

and the specific acoustic impedance is given by
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The resonance frequency is obtained from the free undamped
vibration as
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The amplification α is written as
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where ζ is the damping factor. The relationship for eq(10) has
been shown in Fig.3.

Fig.3 Frequency response for the resonator

3. Transmission loss characteristic
By considering the energy and the continuity relations for a

volume of fluid in the duct adjacent to the opening of the
resonator, the fluctuating pressure for incident wave pi and for
reflecting wave pr can be written as

332211 ririri pppppp +=+=+         (11)

and the volume velocity qi and qr for incident and reflecting wave
are given by

321321 rriiir qqqqqq ++=++             (12)

Here the subscripts 1, 2, and 3 are referred to the fluid surface in
duct at the fore, the aft, and at the opening of the resonator
respectively. For non-reflecting end 

2rp , 
3rp , 

2rq , and 
3rq

all vanish. Equations (11) and (12) become
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Writing volume velocity in eq(14) in terms of pressure, the
following equation is obtained.
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where oZ denotes the characteristic acoustic impedance of air in
duct and equals to oo Sc /ρ . Eliminating 

1rp and 
3ip in eq’s

(13) and (15), one obtains
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The transmission loss can then be written as
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where czR ′= and km zzX ′+′=

4. Results and conclusions
The frequency response of single Helmholtz resonator is

Fig.4 Comparison of transmission characteristic without duct flow

shown in Fig.3. The amplification α of the resonator represents
the ratio of the maximum excess power in the resonator and the
maximum external operating power. These curves indicate that
the dissipation factor has a large influence on the amplification in
the region of resonance.
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Figures 4 and 5 show the transmission loss characteristic of
a duct as obtained from the linear wave theory[4], an
experimental test[5], and the present approach. The comparison
of the results demonstrates a convincingly high degree of
agreement. In the case of no air flow in duct, the linear wave
theory can predict the performance of the resonator very well, but
the approximate method gives a somewhat higher resonance
frequency of about 15% and a lower resonance transmission loss
of roughly 30%. When there is an air flow in duct, the linear wave
theory and the approximate approach indicate a same amount of
drop and rise in resonance frequency respectively. The
transmission loss characteristic at resonance also follows the

Fig.5 Comparison of transmission characteristic with duct flow

same trend.
The approximate method based on the SDOF oscillatory

system is proposed as a convenient platform for solving
preliminary design problems. An improvement for this model of a
single Helmholtz resonator-type silencer can be achieved by
somehow modifying the dissipation term.

Appendix A
The sampled silencer has the following dimensions:

Dimension of duct (mm) 48
Diameter of resonance chamber (mm) 105
Length of resonance chamber (mm) 30
Diameter of connector (mm) 40
Length of connector (mm) 20
Ambient temperature (°C) 23
Density of air (kg/m3) 1.193
Speed of sound (m/s) 346
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