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Abstract 
This paper presents a study of numerical instability for the 

Roe's FDS on triangular meshes.  The H-correction entropy fix is 
modified and included in the upwinding algorithm for unstructured 
triangular meshes to improve the computed shock wave 
resolution.  The solution accuracy is further improved by coupling 
an error estimation procedure with an adaptive remeshing 
algorithm.  Efficiency of the combined procedure is evaluated by 
analyzing supersonic shocks and shock propagation behaviors for 
both the steady and unsteady high-speed compressible flows. 
 
1. Introduction 

High-speed compressible flows normally involve complex 
flow phenomena, such as strong shock waves, shock-shock 
interactions and shear layers.  Various numerical inviscid flux 
formulations have been proposed to solve an approximate 
Riemann problem.  Among these formulations, the flux-difference 
splitting scheme by Roe [1] is widely used due to its accuracy, 
quality and mathematical clarity.  However, the scheme may 
sometimes lead to unphysical flow solutions in certain problems. 
As an example of the odd-even decoupling problem [2], an 
unrealistic perturbation may grow with the planar shock as it 
moves along the duct. 

The main objectives of this paper are to propose and 
evaluate a modified Roe's scheme on adaptive unstructured 
meshes for two-dimensional high-speed compressible flow 
analysis.  The H-correction entropy fix [3] is modified for 
unstructured triangular meshes and implemented into the original 
Roe's scheme.  To improve the analysis solution accuracy, the 
presented scheme is further extended to high-order solution 
accuracy and combined with an adaptive remeshing procedure.  

The efficiency of the combined procedure is evaluated by 
analyzing a series of both steady and unsteady high-speed 
compressible flows. 
 
2. Numerical technique 

The finite volume formulation of two-dimensional Euler 
equations for high-speed compressible flows of an element with 
domain Ω may be written in the form, 
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where Ω is a control volume.  U  is the vector of conservative 

variables, and 
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F  is the vector of the convective fluxes.  The 
Roe's approximate Riemann solver (Roe) is implemented in the 
framework of the cell-centered scheme.  The numerical flux, 
passing through a shared side of the two adjacent left and right 
elements is given by [1], 
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where kα  is the wave strength of the kth wave,  is the 
eigenvalue in , V

kλ
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velocity, a is the speed of sound at the cell interface, and   is 
the corresponding right eigenvector. 
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Sanders et al. [3] introduced an idea of a multidimensional 
dissipation, the so called H-correction entropy fix method.  The 
method has shown to eliminate the unrealistic carbuncle 
phenomenon of the flow over a blunt body in the structured 



 

 

uniform mesh as shown in Fig. 1(a).  The advantages of the 
method are the simplicity in the implementation into the existing 
scheme and the parameter-free characteristics.  For the two 
triangular cells shown in Fig. 1(b), the H-correction entropy fix 
according to Sanders et al., (RoeSA) has been modified to [4], 
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where iη , i = 1 to 5 are, 
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  (a) (b) 
Fig. 1.  Cell interfaces of: (a) structured uniform mesh; 
 (b) unstructured triangular mesh. 
 
Then the eigenvalues are modified according to Ref. [5] 

yielding, 
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The above method has been evaluated using three test cases of 
expansion shocks, an odd-even decoupling, and a kinked Mach 
stem, as presented in the following sections. 
 
3. Algorithm evaluation 

To illustrate an unphysical expansion shock, a Mach 3 flow 
over a forward facing step [6] is investigated.  The density 
contours computed from the Roe and RoeSA, are shown in Fig. 
2(a)-(b), respectively.  The figures show that the Roe produces 
an unphysical expansion shock on top of the facing step corner, 
whereas the RoeSA provides realistic solution. 

The next test case is a Mach 6 moving shock along odd-
even grid perturbation in a straight duct [2].  The computational 
domain consists of a uniform triangular mesh with 800 and 20 
equal intervals, respectively, along the axial and the transverse 
directions of the duct.  The grids along the duct centerline are 
perturbed in the transverse direction with the magnitude of ±10-6.  
The RoeSA can provide accurate shock resolution whereas the 

Roe suffers from the numerical instabilities as depicted in Figs. 
3(a)-(h), respectively.  As explained by Gressier and Moschetta 
[7], the exact capture of contact discontinuity and strict stability 
cannot be simultaneously satisfied in any upwind scheme.  The 
solution suggests that additional dissipation injection to the 
entropy and shear waves is thus needed to stabilize the Roe's 
scheme as done by RoeSA. 
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Fig. 2.  A Mach 3 flow over a forward facing step:  
  (a) Roe; and (b) RoeSA. 

 
 
 
 (a) x ≈ 50 (e) x ≈ 50 
 
 
 (b) x ≈ 120 (f) x ≈ 120 

 
 
 (c) x ≈ 410 (g) x ≈ 410 

 
 

 (d) x ≈ 610 (h) x ≈ 610 
 

Fig. 3.  A Mach 6 moving shock along odd-even grid  
 perturbation: (a)-(d) Roe; and (e)-(h) RoeSA. 

 
A kinked Mach stem generated from a shock moving over a 

ramp is the last test case used to highlight the performance of 
this method.  Figures 4(a)-(b) respectively show the density 
contours obtained from the Roe and RoeSA for a Mach 5 normal 
shock moving over a 46o ramp.  The RoeSA provides reasonable 



 

 

where [ ]Tpvuρ=q

Cq

 consists the primitive variables of 
the density, the velocity components, and the pressure, 
respectively;  is the solution at the element centroid; , n = 
1, 2, 3 are the solutions at nodes.  In this paper, the inverse-
distance weighting from the centroid to the nodes that preserves 
the principle of positivity [9] is used, 

nq

accurate solutions such that the kinked Mach stem is recovered 
with the slightly broken-down incident shock.  The Roe, however, 
yields the broken-down incident shock with severely kinked mach 
stem.  Such solution may be caused by insufficient dissipation 
that cannot counteract the transverse perturbation [2,7].  
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where  are the surrounding cell-centered values of node n.  iC ,q

ir  is the distance from the centroid to node n, and N is the 
number of the surrounding cells. 
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Fig. 5.  Linear reconstruction on a typical triangular element. 
 

The CΨ  in Eq. (6) represents the limiter for preventing 
spurious oscillation that may occur in the region of high gradients.  
In this study, the Vekatakrishnan's limiter function [10] is selected,  (b) 
 Fig. 4.  A kinked Mach stem from a Mach 5 shock moving over 
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 a 46o ramp: (a) Roe; and (b) RoeSA. 
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4. High-order extension and applications on triangular 

meshes 
 Solution accuracy from the first-order formulation described 
in the preceding sections can be improved by implementing a 
high-order formulation for both the space and time.  A high-order 
spatial discretization is achieved by applying the Taylor' series 
expansion to the cell-centered solution for each cell face [8].  For 
instance, the solutions at the midpoint of an element edge 
between node 1 and 2 shown in Fig. 5, can be reconstructed 
from, 

 
where ic qq −=−∆ , iqq −=+ maxmax,∆ , and 

iqq −=+ min, min∆ .  The  and q  are respectively the 
maximum and minimum values of all distance-one neighboring 
cells.   The function φ is similar to the Van Albada limiter [11], 
which is expressed in the form, 
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The second-order temporal accuracy is achieved by 
implementing the second-order accurate Runge-Kutta time 
stepping method [12], 
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where  is the time step.  Local element time steps are used 
for steady-state analysis, while the minimum global time step 
based on spectral radii [13] is used for the unsteady analysis to 
reduce the computation effort. 

t∆

The high-order extension of the Roe's scheme with the 
mixed entropy fix method, RoeSA, presented in the preceding 
section is evaluated by solving test cases.  The modified scheme 
is also combined with an adaptive meshing technique that 
generates unstructured triangular meshes for more complex 
problems.  The selected test cases are: (1) Sod shock tube, (2) 
Supersonic flow over a bump, and (3) Steady-state Mach 15.3 
flow past a cylinder. 
 
Sod shock tube – The one-dimensional shock tube test case, the 
so called Sod shock tube [14], is solved by using a two-
dimensional domain.  The initial conditions of the fluids on the left 
and right sides are given by (ρ, u, p)L = (1.0, 0.0, 1.0) and (ρ, u, 
p)R = (0.125, 0.0, 0.1).  The 1.0 x 0.1 computational domain is 
discretized with uniform triangular elements into 200 and 20 
equal intervals in the x and y directions, respectively.  Figures 
6(a)-(b) show the predicted density and pressure for both first 
and second-order accurate distributions along the tube length and 
are compared with the exact solutions at time t = 0.15.  The 
figures show that the second-order extension of Roe's scheme 
with the entropy fix RoeSA provides more accurate solutions. 
Supersonic flow over a bump – The second-order RoeSA is 
further evaluated for adaptive unstructured meshes using a 
problem with more complex flow phenomena.  Figure 7 shows 
the problem statement of a supersonic Mach 1.4 flow over a 4% 
bump [15] which results in more complex flow behavior.  The 
initial mesh and the corresponding density contours computed by 
using the second-order RoeSA are shown in Figs. 8(a)-(b), 
respectively.  The adaptive meshing technique is then used to 
capture solution discontinuities in order to enhance the solution 
accuracy.  The final adaptive mesh and the corresponding 

density contours computed by using the second-order RoeSA are 
shown in Figs. 9(a)-(b), respectively.  The figures highlight the 
use of the second-order accurate scheme on adaptive meshes to 
effectively obtain detailed flow solution. 
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Fig. 11.  A Mach 15.3 flow past a cylinder: (a) Adaptive mesh;  
 (b)  (b) Density contours; (c) Pressure contours; and  

Fig. 8.  A Mach 1.4 flow over a bump (RoeSA): (a) Initial mesh;   (d) Mach number contours. 
 and (b) Corresponding density contours.  
 5. Conclusion 

 

The modified H-correction entropy fix for triangular meshes 
is proposed to improve numerical stability of the Roe's flux-
difference splitting scheme.  The method was evaluated by 
several well-known test cases and found to eliminate unphysical 
solutions that may arise from the use of the original Roe's 
scheme.  These unphysical solutions include the expansion shock 
generated from the flow over a forward facing step and the 
numerical instability from the odd-even decoupling problem.  To 
further improve solution accuracy, the second-order spatial and 
second-order Runge-Kutta temporal discretization were also 
implemented.  The method was also combined with an adaptive 
mesh generation technique to demonstrate its applicability for 
arbitrary unstructured meshes.  The entire process was found to 
provide more accurate solutions for both the steady-state and 
transient flow test cases. 

 (a) 
 

 
 (b)    

Fig. 9.  A Mach 1.4 flow over a bump (RoeSA): (a) Final mesh;  
 and (b) Corresponding density contours. 
 
Steady-state Mach 15.3 flow past a cylinder – A steady-state 
Mach 15.3 flow past a cylinder [4] described in Fig. 10 is used to 
demonstrate the solution accuracy improvement by coupling the 
RoeSA and the adaptive meshing algorithm.  Figures 11(a)-(d) 
show the final adaptive mesh consisting of 36,986 elements, with 
the resulting density, pressure and Mach number contours. 
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