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Abstract
  In this paper we address issues in the
numerical solution of differential-algebraic equations
(DAEs) arising from the direct approach.  First the
direct approach is described using Adams-Bashforth
technique.  Next, the nonlinear programming
algorithm used to solve the resulting parameterized
optimization problem with an emphasis on its
interaction to the collocation method.  Finally, the
general optimal control software based on this direct
approach is developed in order to test problems and
compare the result with a similar technique developed
by K.E. BRENAN .

1. Introduction
In the problem of optimal control, the trajectory is

determined which satisfies simultaneously equations
of motion, boundary conditions, inequality constraints,
equality constraints, and a performance index (or cost
functional) must be minimized or maximized.  There
are many criteria in order to be used to solve the

optimal control problems such as calculus of
variations, minimum principle, matrix exponential, and
Hamilton-Jacobi equations.  However, these are
considered as indirect procedures since the
necessary and sufficient conditions must be derived
and result in the differential-algebraic equations
(DAEs).   In this paper, we focus on a direct
procedure which is known that the optimal control
problems will be converted to a parameter
optimization problems.  In Section 2, the statement of
the problem is described along with a technique that
developed by K.E. Brenan [1] which is called Hermit-
Simpson collocation method.  We are proposing a
similar technique in Section 3 namely Adams-
Bashforth method.  We believe that by using
collocation method, the Hermit technique is not the
only one that is necessary to be used for such an
accuracy solution.  In Section 4, we describe how the
general optimal control software is developed.
Finally, an example is illustrated in Section 5.
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2. Statement of the Problem
The statement of the problem is to find an

optimal trajectory in both state and control variables
to minimize the cost functional
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where nRx ∈ , mRu ∈ , sR∈δ , qR∈ψ ,
rRc ∈ , and kRg ∈ .
Methods for solving optimal control problems

can be divided into two basic classes: indirect and
direct methods.  In the indirect approach, the optimal
control problem is transformed into a boundary value
problem by formulating the first order necessary
conditions for optimality, thereby obtaining the Euler-
Lagrange system [2],[3],[5].  In the direct approach,
the optimal control problem is approximated by a
parameter optimization problem in which the first
order optimality conditions are not explicitly included.
The Hermit-Simpson formula is used to discretize the
optimal control problem to be a parameter optimal
control problem, then the nonlinear programming
algorithm is used to obtain solution [1].

We now describe the HS (Hermit-Simpson)
method as implement in [1].  Suppose the interval
[ ]ftt ,0  is partitioned into N  subintervals such that

L<< 10 tt  fN tt =< . Define 1−−= iii tth
for Ni ,...,1= .  Let ix  and iu  represent the
approximate state and control values respectively at
the nodes it .  Introduce variables iw  to represent
weighted derivatives of the controls at the nodes.

• Using Hermit cubic interpolation to
represent the solution on each
subinterval, and letting

),,,(),,( puxtfuxtf p = ,  
estimate the values of the states at the
segment centers.

( )
( ( ) ( ))iiipiiip

i
iii

uxtfuxtf

h
xxy

,,,,
82

1

111

1

−

++=

−−−

− (7)

       and the controls at the segment
centers,
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• Evaluate the differential equations at the
center of each segment using the
interpolated center values,

),,ˆ( iiip vytf , where 1
ˆ

−= ii tt
2/)it+ .

• Integrate across the segment using
Simpson’s quadrature rule:

( ( )

( ) ( ))iiipiiip

iiip
i

ii

uxtfvytf

uxtf
h

xx

,,,,ˆ4

,,
6 1111

++

+= −−−− (9)

• Evaluate the path constraints at the
nodes and midpoints:
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Equations (9) through (13) form a nonlinear system of
equations for the unknown variables ix , iu , and



iw at the nodes as well as for the final time ft .  The
parameter optimization problem can now be stated as
nonlinear programming.

3. Numerical Method

3.1 The Fourth-order Runge-Kutta Method
In this section, the explicit fourth-order Runge-Kutta
collocation method is described in a similar procedure
as Hermit-Simpson collocation technique since the
Hermit-Simpson collocation technique and Runge-
Kutta are known as the numerical integrating tools.
Suppose the interval [ ]ftt ,0  is partitioned into N
subintervals such that L<< 10 tt  fN tt =< .
Define 1−−= iii tth  for Ni ,...,1= .  Let ix  and
iu  represent the approximate state and control

values respectively at the nodes it . x  from equation
in the neighborhood of ix  can be expressed in terms
of the Taylor series.  Letting the time increment be

th ∆= , we have
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Instead of using these expressing, it is possible to
replace the first derivative by an average slope and
ignore higher-derivatives
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If we used Simson’s rule, the average slope in the
interval h  becomes, i.e.
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The Runge-Kutta method is very similar to the
preceding computations, except that the center term

of the given equation split into two terms and four
values of xt,  and f  are computed for each point i
as follows:
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These quantities are then used in the following
recurrence formula:
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where it is recognized that the four values of F
divided by 6 results in an average of dtdy /  as
defined.  At this step, we can evaluate all the path
constraints i.e., equations (10), (11), (12), and (13) at
the node points as a parameter p  instead of ix .
These form a nonlinear system of equations as
parameter optimization problems as

)(min pJ      (15)

subject to a set of equation (14) and
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The equations (15) through (19) are known as
nonlinear programming problem that the parameter p



must be determined in order to obtain the feasible
solution to dynamic optimization problem.

3.2 The Fourth-order Adams-Bashforth Method
In this section, another numerical method is
described. The fourth-order Adams-Bashforth method
is an explicit four-step formula which is defined by
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This method needs four steps backward to calculate
the next step. The first four steps will be calculated by
the fourth-order Runge-Kutta method and after that
the fourth-order Adams-Bashforth method will be
used. Using the the fourth-order Runge-Kutta method
in the first four steps because the order of accuracy
of the fourth-order Runge-Kutta method is the same
as the fourth-order Adams-Bashforth method. We use
the fourth-order Runge-Kutta method instead the
Euler’s method to avoid loss of accuracy and
computational time.

4. General Optimal Control Software
The general-purpose program has been

developed using Matlab software.  Furthermore, we
design it as visual inputs and outputs for an easy
implement and use.  First, the problem has been
divided into 3 categories as (i) Fixed end time, (ii)
Variable end time, and (iii) Minimum time as shown in
Figure 1.

All three categories are designed in the front page as
push button; therefore, whenever user pushes the
button, the appropriate second window is opened as
shown in Figure 2, 3, and 4.

Figure 1: The Front page

Figure 2: The Second page (Fixed End Time)

Figure 3: The Second Page (Variable End Time)



Figure 4: The Second Page (Minimum Time)

In each category, user must provide the
considering problem.  Also, this software is divided
into two steps.  First, the software parameterizes the
input problem by the user into the form of nonlinear
programming symbolically and stores all the algebraic
equations as data files.  Similarly for the cost
functional (1) which represented in the integral form is
parameterized by using Simpson rule.  The second
step is called on-line computation that solves the
nonlinear programming problem described in Section
3.  In the problem of nonlinear programming, it is very
well known that the gradients of both the objective
function and the constrained algebraic equation have
the effective on how fast the solution could be
obtained.  Therefor, we propose this gradient as an
option in each category as a simple click then the
code provides all the gradients automatically.  Finally,
if the optimal control solutions are obtained, user can
observe all the optimal trajectories by pushing the plot
button.  Note that the results plotted in this software
are all the state and control variables respect to time.

5. Examples
5.1 Example 1: Spring-mass-damper System

The procedure outlined in this paper for
dynamic optimization is illustrated with the following
example of a two degree-of-freedom spring-mass-
damper system sketched in equation as

Figure 5: Two degree-of-freedom of Spring-mass-
damper System
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The matrices A  and B  for this system are as
follows:
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where the matrices M , C , and K  are:
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The parameters used in the model in MKS
units are: 0.121 == mm , 0.131 == cc ,

0.22 =c , 0.3321 === kkk .  The cost
functional in equation (1) is 21 uuL += .  The
boundary conditions specified for the problem are

( )TtX 00105)( 0 =  and )( ftX



( )T0000= , where 00 =t  and 0.2=ft .
The state and control trajectories obtained from the
optimization procedure described in this paper and
the technique proposed in [1] are overlap within the
accuracy of the drawings shown in Figure 6 and 7.

Figure 6: The Optimal State Solution

Figure 7: The Optimal Control solution

5.2 Flexible Link Robot
In the problem of nonlinear systems, the

example is of a single link manipulator rotating in a
vertical plane driven through a flexible drive train [6],
shown in Figure 8.  The system has two degree-of-
freedom and the equations of motion are
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Figure 8: Flexible Link Robot

Figure 9: The Optimal State Solution
where I  and J  is respectively the link and actuator 
moment of inertia, M  is the mass of the link with 
mass center at a distance l  from the joint, k  is the 
stiffness of the drive train, g  is the gravity constant, 
and u  is the actuator torque.  Let the objective be to 
steer the system from a given set of initial conditions 
on 1q , 2q , 1q& , and 2q&  at 0t  to a specified goal 
point at ft  while minimizing a cost

                      ∫=
ft

t

dtuJ
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2 .

The trajectory must satisfy the constraint 
5050 ≤≤− u  during motion.  The parameters 

used in the model (in MKS units) are: 0.1== JI , 
0.1=k , 8.9=g , 0.1=M , and 5.0=l .

The boundary conditions at both ends are :
( )Ttq 008.00215.004.003.0)( 0 −=  and
( )Ttq 0639.00429.008.006.0)( 0 −−= .  

The state and control trajectories obtained from the
optimization procedure described in this paper and



the technique proposed in [1] are overlap within the
accuracy of the drawings shown in Figure 9 and 10.

Figure 10: The Optimal Control Solution

N CPU Time J
10 262.17 133.55

5
20 1502.20 113.12

8
30 4548.80 111.49

2
Table 1 problem 2 with the fourth-order Adams-

Bashforth method

N CPU Time J
10 172.57 155.47

5
20 826.50 144.59

7
30 4275.20 137.78

4
Table 2 problem 2 with the fourth-order Runge-

Kutta method

6. Conclusion
In both linear optimal control testing problems,

the optimal solutions of state variables provided
numerically by the general-purpose program with the

fourth-order Runge-Kutta and the fourth-order Adams-
Bashforth are close to and have same behaviors as
the analytical solutions from the calculus of variation
and maximum (or minimum) ‘s principle.

However, numerical optimal control variables are
different from analytical solutions due to inaccuracy
caused by direct algorithm. In the direct transcription
method the control variables u(t) normally are
confined by any function such as co-states as in the
indirect method. Furthermore, unlike state variables,
control inputs generally do not have any boundary
conditions to satisfy. For example, the huge values of
errors of control variables obtained from both
methods in this program occur near the initial time t0
and the final time tf.  The error control inputs u(t)
come from the nature of the direct approaches

For nonlinear problem, both methods give almost the
same optimal solution for state variables and control
variables. It is shown that both algorithms can be use
to solve the nonlinear optimal control problem.

For the computation time, the CPU time of the fourth-
order Runge-Kutta methods is lower than the CPU
time of the fourth-order Adams-Bashforth in all three
example problems. In both methods when the number
of step size increase, the CPU time will increase but
the accuracy of solution will increase.
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