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Abstract 
 Electrohydraulic active suspensions have recently attracted 
increased attention in automobile industry because they can 
significantly improve the compromise between many conflicting 
ride and handling measures of vehicle performance. Ideal 
hydraulic force models have been used in active suspension 
studies for decades. However, few studies have included 
hydraulic effects, which are the core of system force generator, in 
the controller design due to its complexities. In this paper a novel 
approach is presented to incorporate hydraulic components in the 
modeling and controller design stage. The method of state-space 
modeling and pole-assignment technique are applied in order to 
determine the optimum solution for the minimization of car body 
acceleration as well as other outputs representing handling 
quality and design constraints. Comparisons between optimum 
Passive Suspension (PS) and optimum Active Suspension 
designed by Pole-Assignment technique (ASPA) have been 
made. Results show that the trend of the carpet plots for the 
ASPA is similar to that of the PS. For each system natural 
frequency, there is an optimum damping level at which the car 
body acceleration level is minimised. This is due to the fact that 
the dominant natural frequency and damping ratio in the ASPA 
are equivalent to the suspension stiffness and damping rate in 
the PS. The optimum solution of the ASPA occurs at the lowest 
system natural frequency and the limitation is the control stability. 
It is found that the ASPA, designed by the system natural 
frequencies lower than 1.6 Hz, will become unstable. Regarding 
magnitude responses, there is no difference for the tire 
deflections or vehicle handling between both optimum designs. 
The ASAP is superior to the PS with respect to the minimization 
of vibration. The ASPA can reduce the vibration level to 51% of 
that obtained from the PS whilst the ASPA utilises less 
suspension displacement than the PS 12%. Even though the 
ASPA provides the better performance in comparison to the PS, 

the conceptual designs of both are similar. The optimum designs 
are still the trade-off between the effects of transmissibility and 
system natural frequency. 
Key-words: automotive active suspension, electrohydraulic 
system, state-space modeling, pole-assignment control 
Nomenclature 

cA  actuator cross-sectional area = 2.46 x 10-4 m2 
tB  tire damping rate = 4000 N/m s-1 
vB  actuator viscous damping rate = 300 N/m s-1 
e    control signal 
F   hydraulic force (N) 
G  D/A gain = 6.25 x 10-3 mA/PSCno. 
i   applied current to servovalve (mA) 

0i  applied current to servovalve at steady-state (mA) 
fk  flow constant of servovalve = 7.38 x 10-9 m3 s-1/mA (N m-2)1/2 

ik  flow gain of servovalve = 2.3 x 10-5 m3 s-1/mA 
1ik  flow gain for side 1 of servovalve (m3 s-1/mA) 
2ik  flow gain for side 2 of servovalve (m3 s-1/mA) 
1Pk  pressure gain for side 1 of servovalve (m3 s-1/N m-2) 
2Pk  pressure gain for side 2 of servovalve (m3 s-1/N m-2) 
tk  tire stiffness = 2.8 x 105 N/m 
m  wheel unit mass = 40 kg 
M  car body mass = 240 kg 
N  A/D gain = 1600 PSCno./V 
P  forward gain for a controller = 0.85 

1P  pressure for side 1 of actuator (N/m2) 
2P  pressure for side 2 of actuator (N/m2) 
SP  supply pressure = 200 bar 
10P  pressure for side 1 of actuator at steady state = 148 bar 
20P  pressure for side 2 of actuator at steady state = 52 bar 
Q  flow rate (m3/s) 

1Q  flow rate for side 1 of actuator (m3/s) 
2Q  flow rate for side 2 of actuator (m3/s) 



 

   

iQ  input flow rate (m3/s) 
oQ  output flow rate (m3/s) 
iR   internal leakage resistance = 98 x 109 N m-2/m3 s-1 
V  actuator chamber and hose volume = 7.13 x 10-5 m3 

1V  V  for side 1 of actuator (m3) 
2V  V  for side 2 of actuator (m3) 
bz  car body displacement (m) 
wz  wheel hub displacement (m) 
rz  road input displacement (m) 

wb zz −  suspension displacement (m) 
wr zz −  tire deflection (m) 

eβ  effective bulk modulus = 0.22 x 109 N/m2 
α  actuator angle = 27 o  
ζ  damping ratio 
nω  undamped natural frequency (rad/s) 

1I   gain for car body velocity sensor = 5 V/ms-1 
1F  gain for suspension displacement sensor = 57.2 V/m 
1J  gain for wheel velocity sensor = 5 V/ms-1 

1H  gain for load cell sensor = 66.7x10-6 V/N 
1L  gain for tire deflection sensor = 18.18 V/m 
2I  feedback gain for car body velocity = 0.244 
2F   feedback gain for suspension displacement = 0.0064 
2J  feedback gain for wheel velocity = 0.277 

2H feedback gain for hydraulic force = -2.602 
2L  feedback gain for tire deflection = 0.356 

 
1. Introduction 

The possible applications of eletrohydraulic active 
suspension range from ride/handling control of automotive 
vehicles, to maneuverability of tanks and off-road vehicles and 
superior ride height and stability control of champion ship race 
car [1,4]. The potential of eletrohydraulic active suspension have 
been assessed with the assistance of the control theory since the 
early 1980s [8]. The first attempt on hydraulic modeling was 
investigated by Mrad et al [10]. A Non-linear model of hydraulic 
components was presented along with simulation results. The 
support spring was placed in parallel with the hydraulic actuator. 
Actuator viscous damping and actuator oil leakage were 
neglected and there was no discussion about how to utilise the 
non-linear model for the controller design. 

Engelman and Rizzoni [6] studied a model that includes non-
linear servovalve equations and proposed a linearization 
technique to obtain linear equations. However, there were two 
questions arising in this paper. Firstly, the assumption of 
operating condition (supply pressure, pressures at both 

servovalve ports, and tank return pressure) was not defined. As a 
result it was not possible to obtain linearized gains, and a linear 
model analysis could not be investigated. Secondly, there was no 
information of constant parameters used for simulation. 
Therefore, the simulation results and discussion is in question. 
From the viewpoint of modeling, a spring was placed in parallel 
with the actuator, therefore instability does not occur. Moreover, 
the model neglected actuator viscous damping and actuator oil 
leakage.  

Thompson and Chaplin [15] also proposed a hydraulic 
actuator placed in parallel with a support spring. Their model 
neglected tire damping, actuator viscous damping, and actuator 
oil leakage. Their analysis began from non-linear servovalve 
equations which were processed into two cases separately 
(extending and retracting cases). Numerical constants were 
provided based on an assumption. The system operating 
condition was well defined. The analysis finished with two non-
linear equations representing both directional movements of the 
actuator. The non-linear model was inserted into a linear quarter 
car model by block diagram analysis. Simulation was used to 
demonstrate a different response to road input for active 
suspensions with and without the hydraulic model. It should be 
noted that Thompson and Chaplin were not able to include the 
non-linear hydraulic model during the controller design stage due 
to nonlinear servovalve model.  

An important task for active suspension design is the 
determination of parameters in a control law that is capable of 
giving good system performance. The control law replaces a 
spring stiffness and a damper coefficient and typically more 
parameters than the passive system possesses are involved. 
Also, the parameter values are less constrained. Although many 
different forms of control designs have been proposed, attention 
here will be confined to fixed-gain full-state feedback control 
schemes, namely pole-assignment control (PA). 

Even though the PA is a standard method to obtain a full-
state feedback controller, few studies have applied this method to 
the active suspension. This research has been found only one 
notable publication, that of Hall and Gill [7]. Skyhook damping 
arrangement was applied and Ideal force model was used. 
Hydraulic model and tire damping were neglected.  Absolute 
displacements of car body and wheel unit were used for state 
feedback. This was impossible for physical realization. Hall and 
Gill examined the effects of closed-loop pole locations on the 
performance of the active suspension and attempted to find an 
optimum design solution. The closed-loop poles were varied 
according to the locations in s-plane and each configuration was 



 

   

used to plot transmissibility relating road input velocity to wheel 
and car body velocities. An optimum design was considered from 
the transmissibility, which is close to the ideal one. The work of 
Hall and Gill encouraged the further development in this research 
work. 

Most of foregoing works have developed active suspension 
controls on the basis of an idealized hydraulic actuator capable of 
delivering force infinitely fast. However, obtaining high fidelity 
actuation in practice is a very challenging task requiring full 
understanding of hydraulic system dynamics. Therefore, the issue 
of the connection between actuator dynamics and controller 
design becomes another important aspect of practical 
significance for active suspension control.  

The objective of this work is to incorporate hydraulic 
components in the controller design stage. The method of pole-
assignment is applied in order to determine the optimum solution 
for ride comfort (the minimization of car body acceleration) and 
road holding (the minimization of tire deflection) within the 
physical constraint (suspension stroke). Comparisons between 
optimum Passive Suspension (PS) and optimum Active 
Suspension designed by Pole-Assignment technique (ASPA) 
have been made. Consider the configuration of electrohydraulic 
active suspension in Fig 1 

 
Fig 1 Electrohydraulic active suspension model [14] 
 

It comprises a high pressure hydraulic actuator in place of a 
conventional spring and shock absorber, and a servovalve used 
to control hydraulic flow rate to the actuator. The model of 
eletrohydraulic active suspension including hydraulic terms can 
be written in state-space format [2,17] as follows:- 

rze && dGBAxx ++=         (1) 
where 

x  = state vector = 
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A  = system matrix = ( )
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B  = input vector = 
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K     = 1 x 5 state feedback gain vector 
N     = A/D gain 

1K    = 1 x 5 state feedback gain vector for the controller   
        = [ ]11111 LFHJI  

2K    = 5 x 5 transducer gain matrix = 
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dG  = disturbance vector = 
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rz&  = disturbance signal, i.e. velocity of road disturbance 
For a regulator controller type, the disturbance term must be 
neglected during a controller design stage. Hence, the state 
equation becomes:- 

eBAxx +=&         (2) 
Consider a full-state feedback control scheme as shown in Fig 2. 

 
Fig 2: Block diagram of full-state feedback control 
 

The control signal e  was given by equation (1). The 
important question that arises is how the feedback gains of the 
five state variables K  can be chosen in order to satisfy the 
design criterion. In this work, pole-assignment controller design 
was applied. 



 

   

2. Pole-assignment control (PA) 
The pole-assignment technique [3,11] allows the designer to 

specify all of the closed-loop poles. However, there is a cost 
associated with the placing all of the closed-loop poles, because 
it requires successful measurements of all state variables. There 
is also the requirement that the system must be completely state-
controllable. This condition is used to determine whether the 
closed-loop poles can be placed at arbitrarily chosen locations. 
As mentioned, the active suspension is equivalent to the 
regulator control system experienced with unmeasured road input 
disturbances [5,18]. More specifically, it is desired to keep all of 
the state variables at a zero reference in the presence of 
disturbances. When the road input velocity and displacement are 
applied to the system, the state variables can be brought back to 
the zero reference by the controller. According to state-space 
model, the five state variables are: bz& , wz& , F , wb zz − , 

rw zz − , while the output variables to be controlled are: 
bz&& , bw zz − , wr zz − . 

From the motion of car body:- 
( )wbvb zzBFzM &&&& −−= αcos      (3) 

Assuming that vB  is very small [13] gives Fzb ∝&& . 
Therefore, the three variables that need to be controlled are 
related to a set of state variables. All of the state variables have 
the same dynamic closed-loop poles, which can be controlled by 
the pole-assignment controller. 

With the power of the pole assignment technique, the 
closed-loop poles can be located at the specific locations in the 
s-plane. In general, the closed-loop poles are specified such that 
the system dynamic is dominated by an ideal second-order 
system. This allows a desired damping ratio ζ  and undamped 
natural frequency nω  of the dominant poles to be specified. 
Substituting the control signal e  into equation (2) gives:- 

( )xBKAx −=&         (4) 
Stability and transient-response characteristic are determined 

by the eigenvalues of matrix BKA − , i.e. regulator poles. If 
vector K  is chosen properly, the matrix BKA −  can be made 
a stable matrix. When the road inputs cause initial states shifting 
from the zero reference, it is possible to make x  approach to 0 
as t  approaches infinity by placing the regulator poles in the left-
hand of the s-plane. 
 
Design steps can be stated as follows:- 
 
Step 1: Check controllability condition of the system 
A controllability matrix cM  is constructed from the system matrix 
A  and the input vector B :- 

[ ]BABABAABBM 432
c =   (5) 

The condition for the controllability can be written in a 
mathematical form as:- 
If 0Mc ≠   then rank [ ] n=cM     (6) 
If rank [ ]cM  is equal to n , i.e. the system order in this work, 
this means that there are no linearly independent column vectors 
in the controllability matrix. Therefore, the regulator poles of the 
matrix A  can be controlled by the gain vectorK . 
 
Step 2: Determine the coefficient terms of characteristic 
polynomial from matrix A  
From the characteristic polynomial for the matrix A :- 
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determine the values of 43210 ,,,, aaaaa . 
 
Step 3: Determine the transformation matrix T  that transforms 
the system state equation into the control canonical form. 
The matrix T  is given by:- 

ccWMT =          (8) 
where cM  = controllability matrix 
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Step 4: Specify desired closed-loop poles 
The closed-loop pole locations must be chosen in such a way 
that the system outputs behave similar to a standard second-
order system. Specifying nω  and ζ , the closed-loop pole 
locations could be obtained as follows:- 

jdωσµ ±−=         (9) 
where 

nζωσ =  
21 ζωω −= nd  

Therefore, the desired closed-loop poles for the active 
suspension are:- 

jdωσµ +−=1  
jdωσµ −−=2  

σµ 103 −=          (10) 
σµ 104 −=  
σµ 105 −=  

The relationship between nω , ζ  and the locations of the five 
closed-loop poles in the s-plane for the ideal second-order 
response is shown in Fig 3. 



 

   

 
Fig 3: Locations of five closed-loop poles in the s-plane for ideal 
second-order responses 

 
The 1µ  and 2µ  terms are a pair of the dominant closed-

loop poles. The remaining three closed-loop poles are located far 
to the left of the dominant pair of the closed-loop poles and the 
damping of the system will be mainly caused from the dominance 
of the closed-loop poles. In this work, the distance, measured 
along the real axis, between the imaginary axis and the 
remaining three poles, is ten times of the distance from the 
imaginary axis to the dominant poles. 
Step 5: Determine the coefficient terms of desired characteristic 
polynomial 
From the desired characteristic polynomial:- 
( )( )( )( )( )
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determine the values of 43210 ,,,, ααααα . 
Step 6: Determine state feed back vector K  
The required state feedback gain vector can be determined from 
equation:- 

[ ] 1TK −−−−−−= 4433221100 aaaaa ααααα  (12) 
From equation (4.73), the state feedback gain vector for the 
controller is of the form:- 

1
21 KKK −−= 1N          (13) 

From substituting constant parameters from nomenclature 
section, it was found that the determinant of the matrix cM  is 
equal to 101033.7 ×− . Consequently, the rank cM  is 5, the 
system is completely state controllable. For this design example, 
the undamped natural frequency, nω  = 1.56 Hz, and the 
damping ratio, ζ  = 0.76, were used. 
 The desired feedback gain vector K  is of the form:- 

[ ]
[ ]43132

4433221100

1010.91025.81059.31050.21056.7 ×××××−=
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−

-1TK aaaaa ααααα  

The control signal e  is obtained by:- 
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From equation (13) and N = 1600  PSCno./V, the feedback gain 
vector for controller 1K  is found to be:- 

[ ]13.31001.937.31013.31044.9 212 −−− ×××−=1K  
he procedure for the PA design has been written in MATLAB 

and Control System Toolbox [9,12,16] to allow systematic 
designs to be processed. 
 
3. Dynamic performance and optimum design 

In order to determine the optimum design (minimum bz&&  
within the available bw zz −  and wr zz − ), the dynamic 
performances of the active suspensions designed by pole-
assignment control (ASPA) were investigated by simulation. The 
mathematical model was built up from equation (1) using 
SIMULINK as shown in Fig 4. 

 
Fig 4: Simulation model representing the interaction between 
active suspension and road input disturbances 
 
The details of the SIMULINK block diagram are given in Fig 5. 

 
Fig 5: Simulation block diagram 



 

   

According to the designs of the PA, it can be seen that it is 
in fact two-dimensional-search problems by tuning two 
parameters of interest, nω  and ζ . The searching problems can 
be globalised by varying these parameters throughout the range 
of values of practical significance. This resulted in 150 simulation 
runs for each case. The random road input model [13] was used 
to excite the systems. The three vehicle response variables of 
interest ( bz&& , bw zz − , wr zz − ) were monitored and averaged by 
the root mean square (rms) method. The rms bw zz − , wr zz −  
were presented in the percentages of each maximum range [13]. 
The results of the global searching are in the form of carpet plots 
of bz&&  vs. bw zz −  and bz&&  vs. wr zz −  respectively. Therefore, a 
comparison between the global investigation for the passive and 
active suspensions can be made. 

The influences of nω  and ζ  on the relationship between 
vibration isolation and the available bw zz −  and wr zz −  are 
illustrated in Fig 6-7. 

 
Fig 6: Relationship between rms suspension displacement and 
rms car body acceleration 
 

 
Fig 7: Relationship between rms tyre deflection and rms car body 
acceleration 
 

Arrows signs are used to indicate the increments of nω  and 
ζ . From the three figures, the optimum point or the minimum 
level of bz&&  lies on the nω =1.6 Hz solid line ABC. Point A 
corresponds to a very high damping ratio (ζ = 0.94) and 
represents the minimum level of bw zz −  and wr zz −  at this 

nω , while point C corresponds to a lesser damping ratio ( ζ = 

0.50) and requires larger movement of bw zz −  and wr zz − . 
Point B corresponds to the minimum level of bz&&  from the global 
searching. Therefore, point B is considered to be the optimum 
design of the ASPA. The design parameters at this point 
corresponds to nω =1.6 Hz and ζ =0.76. From the charts, it can 
be seen that the optimum ASPA is able to reduce the vibration 
level of the car body down to 0.22 2m/s using 15% of the 
available bw zz −  and 10% of the available wr zz − . 
 
4. Results and Discussions 

With the advantage of the foregoing carpet plots, the 
optimum designs of the passive suspension (PS) developed by 
Surawattanawan [13] and that of the ASPA can be obtained. A 
comparison of the rms values of the concerned variables 
between both optimum designs are shown in Table 1. 
 
Table 1: Performance comparisons between both optimum 
suspension designs 
Concerned variables Passive 

suspension 
(PS) 

Active suspension 
designed by 

pole-assignment 
(ASPA) 

Acceleration of car body 
bz&&  ( 2m/s ) 

0.43 0.22 

Suspension 
displacement bw zz −  
(% of max. value) 

17 15 

Tire deflection wr zz −  
(% of max. value) 

10 10 

It can be seen that the ASAP provides the best performance 
with respect to the design objective in this work, i.e. minimising 
the bz&& . The ASPA can reduce the vibration level to 51% of that 
obtained from the PS whilst the ASPA utilises less suspension 
displacement than the PS. It is shown that the bw zz −  response 
in ASPA case is lower than that in PS case 12%. There is no 
difference for the wr zz −  responses for the both optimum 
designs. 

The designs were finally verified by a frequency response 
plot, which is generated from each transfer function, containing 
poles and zeros information. The frequency responses relating 
three concerned parameters bz&& , bw zz − , wr zz −  to rz  of the 
both optimum suspensions are compared in Fig 8-11. 



 

   

The frequency response of the transfer function relating bz&&  
to rz  is plotted in Fig 8. 

 
Fig 8: Comparison of the frequency response of 
car body acceleration for both optimum suspension designs 

The optimum configuration of the PS has a relatively low 
damping ratio (ζ = 0.15) therefore inevitably the effect of the 
natural frequencies of the car body ( nω =1.4 Hz) and that of the 
wheel unit ( nω =13.6 Hz) are dominant. It can be clearly seen 
that the magnitude response is significantly higher at both natural 
frequencies. When the PA is used, it allows the dominant nω  of 
the system, along with the system damping ratio to be changed. 
In this work, the optimum solution for the ASPA occurs for 

nω =1.6 Hz and ζ = 0.76. The magnitude response is 
dramatically reduced around the natural frequency of the car 
body and its peak is slightly shifted to a higher frequency. 
However, the natural frequency of the wheel unit is still dominant 
at the high frequency range so that it results in the increment of 
the magnitude around the natural frequency of the wheel unit. 
The frequency response of the transfer function relating bw zz −  
to rz  is plotted in Fig 9. 

 
Fig 9: Comparison of the frequency response of 
suspension stroke for both optimum suspension designs 

The bw zz −  responses of the ASPA are higher than that of 
the PS at the frequency lower than 1 Hz. This relationship is 
reversed around the natural frequency of the car body and this 
clearly shows the disadvantages of the PS in two aspects as 
follows. Firstly, the PS cannot follow the road input displacement 
well enough in comparison to the ASPA at the frequency lower 
than 1 Hz. Secondly, at the natural frequency of the car body the 

PS requires very large movement of bw zz −  to accommodate 
the resonance effect of the natural frequency. The frequency 
response of the transfer function relating wr zz −  to rz  is plotted 
in Fig 10.  

 
Fig 10: Comparison of the frequency response of tire deflection 
for both optimum suspension designs 

It was found that using a logarithm scale plot for this transfer 
function distorts the results. Therefore, a linear scale plot is also 
shown in Fig 11. 

 
Fig 11: Comparison of the frequency response of tire deflection 
for both optimum suspension designs (linear scale) 

Even though the wr zz −  response of the PS is the largest 
one among the three suspension designs at the low frequency 
range (around the car body nω ), it becomes the smallest 
response at high frequency range. From the linear scale in Fig 
11, the averages of the responses for each suspension designs 
are almost the same. This confirms the comparison in Table 1 
that the both optimum designs utilise the same wr zz − . 
 
5. Conclusion 

The trend of carpet plots for the ASPA is similar to that of 
the PS. For each natural frequency, there is an optimum damping 
level at which the car body acceleration level is minimised. This 
is due to the fact that the dominant natural frequency and 
damping ratio in the ASPA are equivalent to the suspension 
stiffness and damping rate in the PS. 
 Even if there was no difference for the tire deflections 
between both optimum designs, the ASAP is superior to the PS 
with respect to the minimization of vibration. The ASPA can 



 

   

reduce the vibration level to 51% of that obtained from the PS 
whilst the ASPA utilises less suspension displacement than the 
PS 12%. 

The optimum solution of the ASPA occurs at the lowest 
system natural frequency. In a physical sense, the lowest system 
natural frequency is equivalent to the extremely soft passive 
suspension. The limitation of the lowest system natural frequency 
is the control stability. It was found that the ASPA designed by 
the system natural frequencies lower than 1.6 Hz will become 
unstable. 

The large amount of damping ratio damps down the 
resonance around the car body natural frequency but adversely 
affects the transmissibility of the frequencies above the car body 
natural frequency. On the other hand, if the damping ratio is 
reduced beyond the optimum configuration, the suspension turns 
to be very low damping system. Transmissibility effect is reduced 
but the resonance due the car body natural frequency becomes 
more pronounced. This results in an increment of the car body 
acceleration. This phenomenon is similar to that in the PS case. 
It can be concluded that even though the ASPA provides the 
better performance in comparison to the PS, the conceptual 
designs of both are similar. The optimum designs are still the 
trade-off between the effects of transmissibility and system 
natural frequency. 
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