= o & o ' a v 2 A
NIIENWN l%\‘] AAILAVYINTILLUI @l')?laﬂraﬁgﬂﬁusl%?j'huiﬂ(ﬂ%rﬂ Eﬂ?j'lﬁﬂ']illﬂ adlluy

a A dady a ~ 6
DANNANIAALASLN AR AV DIDELLAWN

A Numerical Study of an Early Stage of Alloy Solidification Using Similarity

Transformation and Secant Iterative Technique

Chittin TANGTHIENG

Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University,
Pyathai Road, Patumwan, Bangkok, 10300, Thailand
Tel : 0-2218-6590, Fax : 0-2218-6642, E-mail fmectt@eng.chula.ac.th

Abstract

An asymptotic case of alloy solidification is theoretically and
numerically studied in this paper. In an early stage of alloy
solidification, the problem is assumed one-dimensional and
transient. The governing equations for four separate regions, i.e.,
wall, solid, mushy, and liquid regions, are formulated. A
supplement equation representing an explicit expression between
the solid fraction and the local temperature is incorporated to
close the governing system. Similarity variables are introduced to
transform the governing equations to a set of ordinary differential
equations. A combination of the fourth-order Runge-Kutta and
the Secant iterative technique is employed to obtain the solutions.
Physical properties of the Pb-10 % wt Sn alloy as a solidified
material and of the carbon steel as a wall material are used as a
test case. Grid independence of the numerical results is
examined. The solidus and liquidus constants, which represent
the primary unknowns of the problem, and the temperature profile

are determined.
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1. Introduction

For the past decades, many mathematical models for alloy
solidification have been developed by many researchers using
either the mixture theory [1,2] or the volume-average approach
[3]. It is known that the difficulty of how to develop these
mathematical models stems from the complexity of the mushy
region, in which the solid and liquid can coexist in equilibrium
over a range of temperature. In addition, the characteristic length
scale of the solid structure surrounding by the liquid phase (i.e.,
dendrites) is on the order of 10” to 10™* m, which is so small that
the direct numerical simulation is not plausible. As a result, the
average procedure must be employed to the governing equation,
leading to unknown quantities needed to be modeled to close the
governing system. These supplementary models include the
expression of the solid fraction [4], the viscosity model [5], the
expression for the interfacial terms [3], and more sophisticated
microscopic models [6].

In general, the mathematical models are well suited for the
finite-difference or the finite-element based algorithm. However,
for an asymptotic case where the system can be simplified to a
one-dimensional and transient problem, the similarity solution can
be obtained rather than solving the finite-difference/volume
equations. A major advantage of the similarity approach prior to
the finite-difference/volume method is to reduce the computational
time by collapsing two independent variables into one. In this
study, the governing equations of an asymptotic case will be
transformed to a set of similarity equations. The thickness of the
solidified layer and the liquidus isotherm can be written in terms
of the solidus and liquidus constants. The similarity equations
can be solved by the fourth-order Runge-Kutta, together with the
Secant iterative technique. Both of the solidus and liquidus

constants and the variation of the temperature with the

independent similarity variable are determined.
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2. Problem Formulation
A schematic of the asymptotic case under consideration is

depicted in Figure 1.
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Figure 1 Schematic of the System under Consideration

In the early stage of solidification, the solidified layer is relatively
thin compared to the thickness of the wall and to the
characteristic length scale of the system. Therefore, the problem
can be assumed one-dimensional and transient. In Figure 1, T,
and T represent the initial wall temperature and the initial melt
temperature. T, and T, are the solidus and liquidus temperature
of the binary alloy at a given composition. 81 and 82 represent
the locations corresponding to T4 and T,, respectively. Note that
the value of 51 is also equal to thickness of the solidified layer.
The region bound between 81 and 62 is the mushy region, where
the solid fraction, €, is equal to unity at 'y = 51 and decreases to
zero aty = 62.

To formulate the governing equations, a number of
assumption must be made: (i) The system is one dimensional
and transient. (ii) The wall is assumed semi-infinite. (iii) Physical
properties of each phase are constant. (iv) In the early stage of
solidification, convection in the liquid and mushy regions is
negligible. (v) Local thermodynamics equilibrium exists. Thus,
the solid fraction can be directly determined from the equilibrium

phase diagram. (vi) Macrosegregation is assumed negligible.

It was found that the effects of the change of the density
and the specific heat within the mushy region were small
compared to that of the thermal conductivity [7]. Hence the
density and the specific heat of the solid, liquid, and mushy
regions are treated to be identical. On the other hand, the
thermal conductivity of the mushy region is defined by taking an

average of the thermal conductivity of each individual phase [1]:
km:(1—8)k¢+8kS 1)

With the aforementioned assumptions, the governing
equations with associated boundary conditions for each region

can be written as follows:

(i) Wall region
aTW ot
c =k, - (2)
P e oy
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oT, 0T,
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(iv) Liquid region

oT, o',

Po, ==k oy ®
Ot ay

t=0:T, =T, (9-a)

5 oT, 0T,

y= T, =T,, and —= (9-b)
2b Oy Oy

y —> 0 T, =Ty (9-c)

To close the governing system, the solid fraction must be
specified in terms of the local temperature of the mushy region.
In this study, the category of alloy solidification is limited to the
isomorphous system where both constituents of the binary alloy
are completely miscible in both liquid and solid phases. In
addition, the liquidus and solidus lines are assumed to be straight

lines as shown in Figure 2 [8].
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The solidus and liquidus lines, i.e., 81 and 82, are defined as
d,=0, /ot (15)
d,=0,, /ot (16)

Cinin Ceu

Concentration

Conax

where O, and O, are the solidus and liquidus constants, which
are the primary unknowns of the problem. After performing the
similarity transformation by substituting equations (11)-(16) into

equations (2)-(9), the system of ordinary differential equations are

Figure 2 Simplified Equilibrium Phase Diagram

The relation between the solid fraction and the temperature is
generally determined by applying the lever rule to the binary
phase diagram, which is given by

T2 B Tm

g = (10)
T, —T)+KT, —T)

3. Mathematical Analysis
The governing equations (2)-(9) are transformed to the
system of ordinary differential equations by introducing the

similarity variables as follows:

(i) Wall region

0" + ”TWG; = o (1)
N, =0:0,=0, ad 0, =—10/ (18-a)
n, »>—©:0, =0 | (18-0)



(ii) Solid region
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The transformed supplementary equation (equation (10)) is

2—-0
e= = (25)
2-0_)+x@®O_ -1
The dimensionless parameters appearing in equations

(17)-(25) are the solid-to-wall thermal ratio R,, the wall subcooling
parameter R,, the solid-to-liquid thermal conductivity ratio Rj, the

liquid superheating parameter Ry, the Stefan number Ste, and the

equilibrium partition ratio K. These parameters are defined as

4. Numerical Solution Procedure

Analytical solutions for Gw and 65 from equations (17) and

(19) can be determined by direct integration, which are

0,=—

Y ——[1+err(nwﬂ 27)
R, + erf(G,/2) 2

R, +erf(01nsj
Qg =— 2/

S
R, + erf(G,/2)

(28)

On the other hand, equations (21) and (23) must be solved
numerically using the classical fourth-order Runge-Kutta method.
The initial conditions are the values of em and 9; at Ny, = 1,
which are given by equation (22-a). The value of 9; atMs =1
can be obtained by directly differentiating equation (28).
Substituting e; (1) into equation (22-a) yields

2
(0, —GC,)R, | exp(—C,/4)

0 (=
Jr R, + erf(G,/2)

m

(29)

It can be seen that equation (29) are still a function of G, and
OG>, which are unknowns of the problem. The values of G4 and

O, are estimated first. Then, the fourth-order Runge-Kutta

method is performed by marching through M coordinate. Finally,
the secant iterative technique is applied to update G; and O,
until these two values match the boundary conditions, i.e., Gm(z)
= 2 and em(OO) = 3. The solution is shown to converge if the
difference between the values of G; and O, and the matching
conditions is less than a prescribed tolerance of 10'8.

Note that although the solution of the governing equation for
the liquid region, equation (23), can be analytically determined, it
is very difficult to obtain a converging solution by numerically
solving the governing equation for the mushy region, equation
(21), alone. This is due to the fact that the matching conditions,
equation (22-b), are still a function of G, and O,.

In this study, the properties of the Pb-10 % wt Sn alloy and
the carbon steel are used to calculated the controlling parameters
appearing in equation (26) as a test case. The values of the

properties are summarized in Table 1.



Table 1 Properties and data used to calculate the

controlling parameters

Pb-10 % wt Sn alloy [9]
P = 10,100 kg/m’
¢, = 167 J/(kg-K)
ks = 15.6 W/(m-K)
k¢ = 15.9 W/(m-K)

AH = 26,000 J/kg

Carbon Steel [10]
Py = 7,832 kg/m’
Cow = 434 JI(kg-K)
ky = 63.9 W/(m-K)

Data from Pb-Sn phase diagram [11]

K =0.310
T, =548 K
T, =573 K

Controlling temperatures
T, = 300 K
Too = 650 K

According to the data given in Table 1, the controlling parameters

are as follows:

R, =0.348 , R, =9.92 , R, =0.985

(30)
R, =308, Ste =0.161, and K=0.310

5. Results and Discussion

Grid independence is examined by varying a number of
grids in the mushy and liquid regions (N,, and Ny, respectively).

The result is depicted in Figure 3 below.
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Figure 3 Variation of Relative Error with a Number of Grids

Err; and Err, are the relative errors for G4 and O, respectively.
The relative errors decrease as a number of grids is increased,
resulting in the grid independence of the numerical results.

After the described earlier is

numerical procedure

performed, the values of G; and O, for a given set of controlling

parameters in equation (30) can be obtained:

G,=0761 and G, =0.970 (31)

Thus, the variation of 61 and 62 as a function of time can be
determined from equations (15) and (16), which can be

graphically depicted in Figure 4.
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Figure 4 Variation of the Coating Thickness and the Liquidus

Isotherm with time

It can be seen that both 61 and 62 grow monotonically due to the

semi-infinite wall assumption. In addition, the thickness of the

mushy layer, i.e. 61 - 82, is approximately 27 percent of the
thickness of the solidified later, i.e., 61. It should be noted that
as 81 and 82 get thicker, the ratio of the wall thickness to either

81 or 62 decreases as well. Therefore, the validity of the semi-
infinite wall assumption should be carefully examined.

Figure 5 depicts the temperature profile across all regions in
terms of the similarity variables. As expected, the temperature

rises from the initial wall temperature toward the ambient melt

temperature with increasing T]. Note that in the solid and mushy
regions, the temperature gradient becomes relatively large
compared to the other two regions. Physically, the temperature
increases at a further distance measured from the wall at an
instant time. On the other hand, at a fixed location, the longer
time the solidification takes, the lower the temperature will be. It

can be seen that the temperature reaches the edge of the



thermal boundary layer at 1] is approximately equal to 5. Beyond
this location, the cooling front has not yet penetrated into the

warm liquid.

3.5

Solid
Liquid

Wall

3.0

25

1.0

0.5

0.0

Figure 5 Temperature Profile of the Test Case

6. Conclusions

The theoretical and numerical study of an early stage of
alloy solidification has been performed in this study. The paper
also presents how to adapt the numerical technique to a phase-
change problem by combining the similarity transformation, the
fourth-other Runge-Kutta method, and the Secant iterative
technique. The solidified layer and the liquidus isotherm can be
written in terms of the solidification constants, which are equal to

0.761 and 0.970 for the test case.

Nomenclature

Symbols

¢, = specific heat [J/kg-K]

Err = relative error

AH = latent heat of freezing [J/kg]

k = thermal conductivity [W/m-K]

m = slope of a line in an equilibrium phase diagram
N = number of grids

R; = solid-to-wall thermal ratio

R, = wall subcooling parameter

R; = solid-to-liquid thermal conductivity ratio
R; = liquid superheating parameter

Ste =  Stefan number

t = time [s]

T = temperature [K]

y =  spatial coordinate [m]

Greek Symbols

o
d
€
n
K
p
c
0

thermal diffusivity [mz/s]

= thickness [m]

= solid fraction

= similarity independent variable
= equilibrium partition ratio

= density [kg/m’]

= solidification constant

= dimensionless temperature

Subscripts

o
1

2
¢

= initial state
= corresponding to the solidus temperature

= corresponding to the liquidus temperature

= liquid region

m = mushy region

s = solid region

w = wall region

00 = ambient state
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