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Abstract 
An asymptotic case of alloy solidification is theoretically and 

numerically studied in this paper.  In an early stage of alloy 
solidification, the problem is assumed one-dimensional and 
transient.  The governing equations for four separate regions, i.e., 
wall, solid, mushy, and liquid regions, are formulated.  A 
supplement equation representing an explicit expression between 
the solid fraction and the local temperature is incorporated to 
close the governing system.  Similarity variables are introduced to 
transform the governing equations to a set of ordinary differential 
equations.  A combination of the fourth-order Runge-Kutta and 
the Secant iterative technique is employed to obtain the solutions.  
Physical properties of the Pb-10 % wt Sn alloy as a solidified 
material and of the carbon steel as a wall material are used as a 
test case.  Grid independence of the numerical results is 
examined.  The solidus and liquidus constants, which represent 
the primary unknowns of the problem, and the temperature profile 
are determined. 

 
บทคัดยอ 

บทความฉบับน้ีไดเสนอถึงการแกไขปญหาการแข็งตัวของโลหะ
ผสมในชวงเร่ิมตนโดยระเบียบวิธีเชิงตัวเลข ในการศึกษาครั้งน้ีจะตั้ง 
สมมติฐานวาปญหาน้ันเปนแบบหน่ึงมิติและข้ึนกับเวลา สมการกํากับได
ถูกกําหนดขึ้นในบริเวณส่ีแบบ ไดแก ผนัง ของแข็ง ของผสม(Mushy) 
และของเหลว นอกจากสมการกํากับแลวยังรวมไปถึงสมการชวยเหลือ
ซ่ึงแสดงถึงความสัมพันธระหวางอัตราสวนของแข็ง(solid fraction) และ
อุณหภูมิ  สมการกํากับในทั้งส่ีโดเมนจะถูกเปลี่ยนใหอยูในรูปของระบบ
สมการเชิงอนุพันธสามัญโดยวิธีซิมมิลารลิตี้  คําตอบของระบบสมการ
หาไดจากระเบียบวิธีรุงเง-กัตตา ลําดับที่ส่ีและวิธีการคํานวณซ้ําแบบซี
แคนท  ในการคํานวณเราใชโลหะผสมของตะกั่วและพลวงโดยมีนํ้าหนัก
พลวงอยู 10 % เปนโลหะหลอมเหลว และใชเหล็กกลาเปนแบบหลอ  
ดังน้ันคาพารามิเตอรตาง ๆ สามารถหาไดจากคุณสมบัติเชิงความรอน
ของวัสดุดังกลาว  นอกจากนั้นคําตอบเชิงเลขที่ไดจะถูกตรวจสอบถึง
ความเปนอิสระตอขนาดของกริดที่ใช  ผลลัพธที่นําเสนอจะอยูในรูปของ
คาคงที่โซลิดัส และลิควิดัส และกราฟการเปลี่ยนแปลงของอุณหภูมิ 

 
1. Introduction 

For the past decades, many mathematical models for alloy 
solidification have been developed by many researchers using 
either the mixture theory [1,2] or the volume-average approach 
[3].  It is known that the difficulty of how to develop these 
mathematical models stems from the complexity of the mushy 
region, in which the solid and liquid can coexist in equilibrium 
over a range of temperature.  In addition, the characteristic length 
scale of the solid structure surrounding by the liquid phase (i.e., 
dendrites) is on the order of 10-5 to 10-4 m, which is so small that 
the direct numerical simulation is not plausible.  As a result, the 
average procedure must be employed to the governing equation, 
leading to unknown quantities needed to be modeled to close the 
governing system.  These supplementary models include the 
expression of the solid fraction [4], the viscosity model [5], the 
expression for the interfacial terms [3], and more sophisticated 
microscopic models [6]. 

In general, the mathematical models are well suited for the 
finite-difference or the finite-element based algorithm.  However, 
for an asymptotic case where the system can be simplified to a 
one-dimensional and transient problem, the similarity solution can 
be obtained rather than solving the finite-difference/volume 
equations.  A major advantage of the similarity approach prior to 
the finite-difference/volume method is to reduce the computational 
time by collapsing two independent variables into one.  In this 
study, the governing equations of an asymptotic case will be 
transformed to a set of similarity equations.  The thickness of the 
solidified layer and the liquidus isotherm can be written in terms 
of the solidus and liquidus constants.  The similarity equations 
can be solved by the fourth-order Runge-Kutta, together with the 
Secant iterative technique.  Both of the solidus and liquidus 
constants and the variation of the temperature with the 
independent similarity variable are determined. 
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2. Problem Formulation 
A schematic of the asymptotic case under consideration is 

depicted in Figure 1. 
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       Figure 1  Schematic of the System under Consideration 
 
In the early stage of solidification, the solidified layer is relatively 
thin compared to the thickness of the wall and to the 
characteristic length scale of the system.  Therefore, the problem 
can be assumed one-dimensional and transient.  In Figure 1, To 
and T∞ represent the initial wall temperature and the initial melt 
temperature.  T1 and T2 are the solidus and liquidus temperature 
of the binary alloy at a given composition.  δ1 and δ2 represent 
the locations corresponding to T1 and T2, respectively.  Note that 
the value of δ1 is also equal to thickness of the solidified layer.  
The region bound between δ1 and δ2 is the mushy region, where 
the solid fraction, ε, is equal to unity at y = δ1 and decreases to 
zero at y = δ2.   

To formulate the governing equations, a number of 
assumption must be made: (i) The system is one dimensional 
and transient. (ii) The wall is assumed semi-infinite. (iii) Physical 
properties of each phase are constant. (iv) In the early stage of 
solidification, convection in the liquid and mushy regions is 
negligible. (v) Local thermodynamics equilibrium exists.  Thus, 
the solid fraction can be directly determined from the equilibrium 
phase diagram. (vi) Macrosegregation is assumed negligible. 

It was found that the effects of the change of the density 
and the specific heat within the mushy region were small 
compared to that of the thermal conductivity [7].  Hence the 
density and the specific heat of the solid, liquid, and mushy 
regions are treated to be identical.  On the other hand, the 
thermal conductivity of the mushy region is defined by taking an 
average of the thermal conductivity of each individual phase [1]: 

 

sm k k )1(k ε+ε−= l              (1) 
 

With the aforementioned assumptions, the governing 
equations with associated boundary conditions for each region 
can be written as follows: 
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(ii)  Solid region 
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(iii)  Mushy region 
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(iv)  Liquid region  
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To close the governing system, the solid fraction must be 

specified in terms of the local temperature of the mushy region.  
In this study, the category of alloy solidification is limited to the 
isomorphous system where both constituents of the binary alloy 
are completely miscible in both liquid and solid phases.  In 
addition, the liquidus and solidus lines are assumed to be straight 
lines as shown in Figure 2 [8]. 
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       Figure 2  Simplified Equilibrium Phase Diagram 
 
The relation between the solid fraction and the temperature is 
generally determined by applying the lever rule to the binary 
phase diagram, which is given by 
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3. Mathematical Analysis 
The governing equations (2)-(9) are transformed to the 

system of ordinary differential equations by introducing the 
similarity variables as follows: 
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(ii)  Solid region 
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(iii)  Mushy region 
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(iv)  Liquid region 
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The solidus and liquidus lines, i.e., δ1 and δ2, are defined as 

ts11 ασ=δ               (15) 

ts22 ασ=δ               (16) 
 

where σ1 and σ2 are the solidus and liquidus constants, which 
are the primary unknowns of the problem.  After performing the 
similarity transformation by substituting equations (11)-(16) into 
equations (2)-(9), the system of ordinary differential equations are 
 

(i)  Wall region 

0      
2

      w
w

w =θ′
η

+θ ′′              (17) 

s
1

1
wsww

R
and:  0 θ′

σ
=θ′θ=θ=η            (18-a) 

0:  ww =θ−∞→η              (18-b) 

 

 



(ii)  Solid region  
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(iii)  Mushy region  
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(iv)  Liquid region  
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The transformed supplementary equation (equation (10)) is 
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The dimensionless parameters appearing in equations  
(17)-(25) are the solid-to-wall thermal ratio R1, the wall subcooling 
parameter R2, the solid-to-liquid thermal conductivity ratio R3, the 
liquid superheating parameter R4, the Stefan number Ste, and the 
equilibrium partition ratio κ.  These parameters are defined as 
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4. Numerical Solution Procedure 
Analytical solutions for θw and θs from equations (17) and 

(19) can be determined by direct integration, which are 
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On the other hand, equations (21) and (23) must be solved 
numerically using the classical fourth-order Runge-Kutta method.  
The initial conditions are the values of θm and θ  at ηm′ m = 1, 
which are given by equation (22-a).  The value of θs′  at ηs = 1 
can be obtained by directly differentiating equation (28).  
Substituting )1(sθ′  into equation (22-a) yields 
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It can be seen that equation (29) are still a function of σ1 and 
σ2, which are unknowns of the problem.  The values of σ1 and 
σ2 are estimated first.  Then, the fourth-order Runge-Kutta 
method is performed by marching through η coordinate.  Finally, 
the secant iterative technique is applied to update σ1 and σ2 
until these two values match the boundary conditions, i.e., θm(2) 
= 2 and θm(∞) = 3.  The solution is shown to converge if the 
difference between the values of σ1 and σ2 and the matching 
conditions is less than a prescribed tolerance of 10-8. 

Note that although the solution of the governing equation for 
the liquid region, equation (23), can be analytically determined, it 
is very difficult to obtain a converging solution by numerically 
solving the governing equation for the mushy region, equation 
(21), alone.  This is due to the fact that the matching conditions, 
equation (22-b), are still a function of σ1 and σ2.   

In this study, the properties of the Pb-10 % wt Sn alloy and  
the carbon steel are used to calculated the controlling parameters 
appearing in equation (26) as a test case.  The values of the 
properties are summarized in Table 1. 



Table 1 Properties and data used to calculate the 
 controlling parameters 
 

Pb-10 % wt Sn alloy [9] 
 ρ = 10,100 kg/m3 

 cp = 167 J/(kg-K) 
 ks = 15.6 W/(m-K) 
 kl = 15.9 W/(m-K) 

 ∆H = 26,000 J/kg 
Carbon Steel [10] 
 ρw = 7,832 kg/m3 

 cpw = 434 J/(kg-K) 
 kw = 63.9 W/(m-K) 
Data from Pb-Sn phase diagram [11] 
 κ = 0.310 
 T1 = 548 K 
 T2 = 573 K 
Controlling temperatures 
 To = 300 K 
 T∞ = 650 K 
 
According to the data given in Table 1, the controlling parameters 
are as follows: 
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5. Results and Discussion 
Grid independence is examined by varying a number of 

grids in the mushy and liquid regions (Nm and Nl, respectively).  
The result is depicted in Figure 3 below. 
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  Figure 3  Variation of Rel

Err1 and Err2 are the relative errors for σ1 and σ2, respectively. 
The relative errors decrease as a number of grids is increased, 
resulting in the grid independence of the numerical results.  

After the numerical procedure described earlier is 
performed, the values of σ1 and σ2 for a given set of controlling 
parameters in equation (30) can be obtained: 

 

970.0and761.0 21 =σ=σ             (31) 
 

Thus, the variation of δ1 and δ2 as a function of time can be 
determined from equations (15) and (16), which can be 
graphically depicted in Figure 4. 
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Figure 4  Variation of the Coating Thickness and the Liquidus 
             Isotherm with time 
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It can be seen that both δ1 and δ2 grow monotonically due to the 
semi-infinite wall assumption.  In addition, the thickness of the 
mushy layer, i.e. δ1 − δ2, is approximately 27 percent of the 
thickness of the solidified later, i.e., δ1.  It should be noted that 
as δ1 and δ2 get thicker, the ratio of the wall thickness to either 
δ1 or δ2 decreases as well.  Therefore, the validity of the semi-
infinite wall assumption should be carefully examined. 

Err1 
Err2 

Figure 5 depicts the temperature profile across all regions in 
terms of the similarity variables.  As expected, the temperature 
rises from the initial wall temperature toward the ambient melt 
temperature with increasing η.  Note that in the solid and mushy 
regions, the temperature gradient becomes relatively large 
compared to the other two regions.  Physically, the temperature 
increases at a further distance measured from the wall at an 
instant time.  On the other hand, at a fixed location, the longer 
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thermal boundary layer at η is approximately equal to 5.  Beyond 
this location, the cooling front has not yet penetrated into the 
warm liquid.  
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            Figure 5  Temperatur
 
6. Conclusions 
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Nomenclature 
Symbols 
cp = specific heat [J/kg-K
Err = relative error 
∆H = latent heat of freezin
k = thermal conductivity 
m = slope of a line in an 
N = number of grids 
R1 = solid-to-wall thermal 
R2 = wall subcooling para
R3 = solid-to-liquid therma
R1 = liquid superheating p
Ste = Stefan number 
t = time [s] 
T = temperature [K] 
y = spatial coordinate [m
 

Greek Symbols 
α = thermal diffusivity [m2/s] 
δ = thickness [m] 
ε = solid fraction 
η = similarity independent variable 
κ = equilibrium partition ratio 
ρ = density [kg/m3] 
σ = solidification constant 
θ = dimensionless temperature θ 
Subscripts 
o = initial state 
1 = corresponding to the solidus temperature 
2 = corresponding to the liquidus temperature 
l = liquid region 
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m = mushy region 
s = solid region 
w = wall region 
∞ = ambient state 
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