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Abstract

The finite element method is used to study interfacial
behavior inside biomaterials. The method and the contact
constraints given as complemental conditions are performed by
applying an augmented Lagrangian formulation for static two-
dimensional frictionless contacts. Homogeneous material with no
bonding between bones under linear elastic plane-strain condition
are assumed. A finite element formulation and a corresponding
computer program have been developed and validated by
examples that have analytical solutions. Problems with complex
geometry are presented to demonstrate the capability the finite

element method for predicting detailed stress of dental implants.

1. Introduction

Dental implants are recently popular alternative to dentures.
In general, dental implants restore the function of missing or
removed teeth. They are anchored in the underlying alveolar
Lone while protruding through the socket into the oral cavity so
as to provide abutment posts for single-tooth, fixed bridge or full
arch appliances. As with their roles, dental implants undergo
occlusal forces of various magnitudes and directions, some of
which can be very large. Thus, the structural integrity and
placement of implants are crucial for implant success.

Finite element analysis has been used recently in the field of
orthopedic to investigate the stress transfer at the bone-implant
interface for various designs. The use of the finite element
analysis for structural mechanics of dental implants is ideal
because it allows one to assess various parameters such as
implant diameter, implant shape and load direction. All of these
parameters play important roles in evaluating the efficacy of the
dental implants. The principal difficulty in simulating the

mechanical behavior of dental implants is the modeling of human

bene tissue and its respond to applied mechanical forces. The
substantial complexity of the mechanical characterization of bone
and its interaction with implant systems has led to major and
often incorrect simplification made in previous analyses,
especially an assumption of bonding between bone and implant
[1]. The contact between bone and implant is often modeled as
a perfect bond, a situation exists in only a few cases. Therefore,
the imperfect contact and its effect on the load transfer from
implant to supporting bone need to be modeled more carefully.
Typical mechanical behavior of bone-implant interface is similar to
a material which exhibits a very low tensile and very high
compressive pressure. Aware of this situation, contact problems
have been applied to simulate the bone-implant interface which is
used in orthopedic biomechanics studies [2]. The complexity in
formulation arises due to the unknown contact surfaces and
boundary conditions (displacements and contact forces) during
loading.

In this paper, an augmented Largrangian formulation is used
to solve small displacement frictionless contact behavior between
deformable discretized bodies in two dimensions. The basic
description and contact condition together with a finite element
discretization of the twe bodies are first defined in section 2. In
section 3, the computational procedure of Usawa algorithm [6] is
demonstrated. Validation of the contact model is presented in
section 4 by comparing the predicted solutions with analytical
solutions. Finally, applications of dental implant problems with
complex geometry are presented to demanstrate the capability of

the finite element method.



2. Theoretical formulation and solution procedure

2.1 Basic description and impenetrability constraint

The two bodies denoted by €'and (°as shown in Fig. 1
are defined as the tfargef and confactor, respectively. The
boundary of Q'and Q° are denoted by ['and . At any time
t, the boundary of each contact can be defined as,

n n n n
r"=r, ur; ur, n=1,2 (1)

where I'" denotes the total boundary of body n; 1"; and l": are
parts of the boundary I'" for which the displacements and

boundary loads are prescribed, respectively; and FC" is the part

of boundary where contact may occur.
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Fig. 1

Two bodies in contact system

The required conditions along the contact and the target
surfaces are such that material overlapping cannot occur. As the
result, contact forces are developed and act along the region of
contact upon the target and the contactor. The normal tractions
can only exert as compression action. The constraints normal to
the contact surface can be expressed in terms of the following
inequalities and equations that must be satisfied at each point an

the contactor,

g,=0 (2a)
t, <0 (2b)
t,-g,=0 (2c)

The first inequality (2a) represents the kinematic condition of no
penetration of the contact surface. The second inequality (2b) is
the static condition of compressive (or zero) normal tractions. The
third equation {2c) states a complementary condition. If there is

no contact, then no compressive traction can occur.

2.2 Variational formulation

The principal of virtual work, an equivalent formulation of the
balance of momentum which often is called weak form of
equilibrium, is used to formulate the contact behavior. For static

contact problems, the virtual work can be written as,
La&dg—f ;.audrF—J. tn-oudr =0 (3)
I I, " B

where o is the stress vector, e is the infinitesimal strain vector,
tis the surface traction vector on T, ¢ is the contact forces on

T, that have n as the unit surface normal vector and u is the
displacement vector. The stress components are related to the

strain components by the generalized Hook's law,
ag=Ce 4)

The vector @ contains the stress components ¢, ,0 and r,_, C
is the material stiffness matrix [3]. The vector of the strain

components is related to the displacement gradients given by,

;
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The contact constraint can be incorporated via different
formulation into the general variational framework of the finite

element method by the approach below.

2.3 Augmented Lagrangian formulation
The concept of the method [4-5] is based on modifying the

contact term in equation (3),

jﬂaaa da- LI-&u dr, - jl_c(-:tﬂ +eg (X)), (x)dr, =0

(6)

where A is Lagrange multiplier interpreted as the contact forces.

The approach between two discretized bodies is

characterized, as shown in Fig. 2, by the following gap function,

g.0=[—1-ax~&x]n )

where g, denotes the gap between two bodies normal to the

target. From the above equation, g,(x) >0 if a contact node

has no penetration to the target segment. ¢ is known as the

penalty parameter for the penalty regularization. An additional



variable Lagrange multiplier, A, must be satisfied over r’ by the
following condition,

-1, <0 (8)

The crucial idea in the method of augmented Lagrangian is to
regard 4 as a fixed current estimate of the correct Lagrange

multiplier and then to solve,

Lcé‘e da - _I-ri-audr‘, - J; < —An‘“ +£g (x)>-a9 (x)d[[ =0
F c

(@)

where /1””’ 2 0 denotes the fixed estimate of the correct A . The
subscript ( )(k) reflects the fact that the search for the correct 4 is
an iterative process. One would suppose that it is good
approximation to the correct multiplier, which motivates the
update formula,

A= <2 reg > (10)

1
< > is called the Macauley bracket, defined as < x >= —[x 7|x|] .
2

Its appearance in Eq. (8) is consistent with the interpretation of
—inm +¢ g, as the normal contact pressure, which must be

negative.
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Fig. 2 Node-to-segment contact element.

2.4 Finite element formulation

It should be noted that Eq. (9) is nonlinear due to the
nonlinear boundary conditions. Newton’s method [6] is used to
solve for solutions. The procedure is based on the Lagrangian
description using the current configuration which leads te the
updated Lagrangian formulation. The finite element equations

corresponding to Eq. (9) can be written as,

G(u) =Ru)-P-R_, =0 (11

Here the body Q" is discretized by n, finite elements where,

Mg

R{u) :891 I, B'o dO (12)
Ne -

P =Uf Ntar (13)
e= 8
g

R, :e=1<'1n+€ng,,>'Ns (14)

where n; is number of contact nodes on the boundary of
contactor. N contains the shape functions and B is the strain
displacement matrix. R denotes the

interpolation stress

divergence term or internal forces. R. is the vector of contact
forces and P is the load pattern.

For a known fixed Lagrange multiplier A , the Newton's
method is used to solve the nonlinear Eqg. (11). The result, after

linearization in the equation system at the state u, can be written

as
[K, + KC]{AU} = -G(u) (15)
where
I'Ie T
K- U, B'cB da (16)
K, :eg £, NgNL {17)
Ns:[n —(1-&)n %-n]' (18)

3. Computational procedure

From the previous section, the Lagrange multiplier is held
constant during an iteration loop to solve the weak form in the
inner loop. Then within an outer loop, the Lagrange multiplier is
updated to a new value. This procedure is known as the Uzawa

algorithm [6] with description as follows,

Initialize algorithm: — /ln(“) = <-A teg9, >

from the last load step

Loop over augmentations: k=1, ..., convergence
Loop over iterations: 1=1, ..., convergence
Solve: G(u) =0 by Eq. (15)

Update displacement: u,, =u, + Au
Check for convergence: ”G(u)” < tol => end loop

End loop



Loop over contact node: n=1, ..., n,
Update: -4 = «-2% +¢g >
Check for convergence: ”gn(u)" < tol => stop

End loop
End loop

4. Numerical results

Numerical results are presented in this section to

demonstrate the validity of the described procedure. In these
examples, small displacements and elastic deformation were
assumed.
4.1 An elastic cylinder compressed by a rigid block onto a
rigid foundation

An elastic cylinder compressed by a rigid block onto a rigid
foundation as shown in Fig. 3 is used as the first example
because its analylical solution is available. Due to symmetry,
only one quarter of the cylinder was modeled as shown in Fig. 4.
In this example, the total prescribed displacement was 1.35 mm.
The calculated contact pressure distribution is shown in Fig. 5, for
which the Hertzian solution [7] is also presented for comparison.
The predicted radius of contacting area was 6.62 mm as

compared to 6.87 mm by Hertzian solution.

4.2 Indentation of an elastic half-space by a rigid punch

The problem is depicted in Fig. 6 with the finite element
mesh. For pressure load on the rigid punch of 0.328 GPa,
contact pressure on the contacting area was solved and

compared with the analytical solution [7] as shown in Fig. 7.

4.3 A screw thread problem

To evaluate the finite element formulation described on a
more complex geametry, a screw thread problem as illustrated in
Fig. 8 was used. The problem consists of the fixed and moving
parts that have the same material property. The moving part has
a prescribed displacement in the vertical direction. Figure 9
shows the predicted von Mises stress contours with high stress

near the contact regions.

4.4 Bone stress distribution from dental implant

The finite element formulation was further evaluated on a
more realistic problem of a bone stress analysis for dental
implant. The problem statement, as shown in Fig. 10, consists of
a titanium dental implant inserted in the cortical and cancellous
bones. Detailed geometry of the implant teeth and material
properties are shown in Fig. 10 and Table 1, respectively. A

finite element mesh consisting of 2,230 nodes and 4,011

triangular elements with fine mesh in the teeth contact region is
shown in Fig. 11. The predicted von Mises stress contours are
shown in Fig. 12. The figure indicates that high stress occurs at

the upper surface of the cortical bone near the dental implant.

E=200 GPa
V=03

Fig. 3 A oylinder pressed by a rigid block onto a rigid
foundation.
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(a) The finite element model for the cylinder.

Fig. 4

{(b) The deformed configuration of the cylinder.
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Fig. 5 Contact pressure distribution on a cylinder, where
the horizontal axis is a distance from the center of

cylinder,
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Fig. 6 Finite element mesh for the punch problem,

Punch width =1 m and height =0.5 m.
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Fig. 7 Contact pressure distribute on the punch.
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Fig. 8 Finite element mesh for the screw thread problem.
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Fig. 9 Predicted von Mises stress contours for a screw

thread problem.
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Fig. 10 The model of a dental implant and bone.

Materials Young's modulus Polsson’s ratio
(E, GPa) (V)
Cortical bone 13.7 0.3
Cancellous bone 1.37 0.3
Titanium 103.4 0.33

Table 1 Properties of materials used in the model [8].



Fig. 11 Finite element mesh of dental implant and bone

model.
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Fig. 12 Predicted von Mises stress contours in bone.

5. Conclusions

A finite element method was developed for studying the
interfacial behavior inside biomaterials. The augmented
Lagrangian formulation with Uzawa algorithm was implemented.
Homogeneous materials with no bonding between the bone and
dental implant under linear elastic plane-strain condition are
assumed. A corresponding computer program has been
developed and verified by examples for contact problems that
have exact or analytical solutions. The developed finite element
formulation and computer program were further evaluated on

more complex problems with arbitrary geometry. Results show

the capability of the finite element method that can provide inside

of the detailed stress distribution of the bone and dental implants.
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