

การประชุมวิชาการเครือขายวิศวกรรมเครื่องกลแหงประเทศไทยครั้งที่ 17
15-17 ตุลาคม 2546 จังหวัดปราจีนบุรี

The Efficient Search Technique for Mechanical Component Selection

Tanunchai Jumnongpukdee1 Apichart Suppapitnarm2

National Metal and Materials Technology Center, National Science and Technology Development Agency
114 Thailand Science Park, Paholyothin Road, Klong Luang, Pathumthani 12120, Thailand

Tel: 0-25646500 Ext. 4357 Fax: 0-25646370 E-mail: tanuncj@mtec.or.th1, apichas@mtec.or.th2

Abstract
In this paper we propose our implementation of the efficient

search technique for mechanical component selection and
demonstrate its application in the selection of bearings.
Comparing our technique with conventional data retrieval
methods, three advantages were identified. First, our proposed
method could reduce time to search significantly. The technique
allows users to search and filter for parts in many different
consecutive paths according to the user’s interests, so that the
required parts are retrieved more directly and as intended.
Second, as the technique has been implemented with great
customization during the search process, the users can then view
more and more details of the parts as they like, in any order field,
and can stop the search anywhere once they have found the
required parts. Finally, because our method has been developed
with a powerful object-oriented concept i.e. Microsoft® Visual C#
on the Microsoft® .NET framework, the implementation can also
be easily applied for other engineering related projects. Our
proposed technique has been presented as an integral part of a
mechanical component selection framework where each
component can be searched and retrieved efficiently from their
relevant database. It is anticipated that the technique will also be
useful for the development of searching for other products that
required similar levels of searching complexity.

Keywords: Engineering search technique, dictionary of product
characteristics, mechanical component database

1. Introduction

Currently, most of the dictionaries of product characteristics
available in the form of electronic media, especially for
engineering components such as bearings, are published in
online catalogs or scanned paper catalogs on the internet and

intranet. Although these give designers some advantages in the
selection process, there still remained a few problems particularly
when designers have to do several iterative search for the
mechanical parts. One of the reasons is that there is a lack of
well structured information retrieval as most currently available
are just scanned paper catalogs with an alphabetical list of part
characteristics. With this structure, the search mechanism can be
performed only once, each with a specified set of keywords, and
the most closely matched solutions or mechanical parts, in this
case, are then offered to designers. Although the keyword search
structure is considered efficient and most widely used for general
purposes, such mechanism is not suitable for use in mechanical
component selection such as bearings, gears, shafts etc. There
are several considerations for each mechanical part and changes
in the requirements or designer’s intentions occur frequently
during the design activities. For these reasons, the efficient
search structure should offer designers some flexibility in the
selection process, including the number of specified
fields/considerations and the sequence of the fields, and allow
the designer to filter information as needed. In this paper, we
attempt to develop such a search structure, fitted with convenient
graphical user interface, for mechanical component selection and
demonstrate its application in the selection of bearings. The
search program allows the user to filter and view more and more
details of mechanical parts in many steps and in any order field,
and the user can stop the search anywhere. For example, the
user can first select the most important field, views the details of
available parts at this point and then selects another interesting
field and views the (closer) details of the parts and so on, until
the parts meeting all requirements and intentions are identified.

Section 2 provides some background and reviews related to
this work. Our system architecture and its implementation are
then described in Section 3. A few conclusions are given in

Section 4 and possible future work related to the program is
outlined in Section 5.

2. Background and Related Work

Most of online dictionaries of product characteristics in the
field of mechanical component selection, such as those in [1] and
[2], consist of scanned paper catalogs which can not easily be
processed, retrieved and searched. In particular, when the
designer needs to select several mechanical components, each
with many different considerations, scanned paper catalogs with
one-time keyword search offer very low level of matching
accuracy during the search process and consequently, could not
offer the suitable parts required by the designer. In the case of
deep groove ball bearings for example, the designer can require
considerations in static load, dynamic load and mass of bearing
in one application and only static load and mass in another
application. Different levels of requirements as well as different
considerations in various mechanical components cause the
keyword search structure for general purposes unsuitable for the
engineering selection. By our experience, the dictionaries of
product characteristics that have a more advanced search
structure than a one-time keyword search do exist [3]. However,
there are still a few limitations associated with this structure.
Although such structure allows the user to specify the search in
many requirement fields, the user has to identify the fields at the
beginning and then input each requirement in those fields before
the search could be performed. The user cannot view a set of
solutions or parts during each step of the search and hence, the
search still performs like a one-time keyword search algorithm,
except that each keyword is identified in a more explicit format.
Although the required parts could be identified precisely from
catalogs with the above search structure, its presentation narrows
the exploration of potential alternatives, and hence, the design
overall, as the user cannot see such alternatives during each
step of the search.

Considering the complexity of the search algorithm with
different numbers and sequences of fields, if, for example, a
programmer needs to write if-case conditions for fields A, B and
C, there are a total of 15 possible paths that the user can select
before conducting the search. These are A, B, C, AB, AC, BC,
BA, CB, CA, ABC, ACB, CBA, CAB, BAC and BCA. The next
question is that if we have several fields, more than 10 or 20
fields, say, then the number of paths to be constructed in the
program will be very large. Table 1 gives the relationship
between the number of fields and the number of possible paths.

Table 1: Relationship between the number of fields and the
number of possible paths

In the book of Modern Information Retrieval [4], there is a

computer program, called the filter flow model, which was
developed by Young and Sheneiderman [5]. It allows users to
filter more and more in a few attributed types or fields. However,
the program has further limitation in the number of fields, only
about 3-4 attributed types are allowed. The reason for such
limitation could be speculated by the relationship given in Table
1. Our technique offers an alternative way that can manage a
large number of fields efficiently and hence the technique can be
applied to the selection of various mechanical components.

3. System Architechture

The system architecture of our search technique was
established based on the Microsoft® .NET framework [6]. .NET
framework is a set of Microsoft® core technologies for connecting
information, people, systems and devices. Examples of .NET
modules include windows forms and web forms, as we know well.
Microsoft® .NET framework enables a high level of software
integration through the use of XML (extensible markup language)
web services. Our proposed program was written mainly with the
Microsoft® Visual C# .NET, which is a hybrid between C++ and
Microsoft® Visual Basic. Microsoft® Visual C# .NET enhances
capability of C++ such as ease of reusable codes, and that of
Microsoft® Visual Basic such as convenience of building a
graphical user interface on windows form.

Figure 1 shows the system architecture of our proposed
framework. The system architecture has three tiers as three-tier
architecture can be disconnected in order to reduce overload of
database server. One is the data tier which consists of multiple
databases, in this illustration, the bearing database, and OLEDB.
The middle tier consists of OleDbConnection, OleDbCommand
and OleDbDataAdapter. Data tier allows us to retrieve a database
with OleDbConnection class, by specifying a database name,
host or server name and a security type. The read and write
properties of OleDbCommand class are first set to their initial

Number of fields Possible paths that user
can select

2 2+2 = 4
3 3+6+6 = 15
4 4+12+24+24 = 64
5 5+20+60+120+120 = 325

values. The SQL statement is then filled into OleDbCommand
class. There are a number of classes associated with the
architecture. These are .NET framework class libraries. OLEDB is
a set of interfaces for data access. OLEDB provides a flexible

and efficient database architecture for accessing and
manipulating all types of data. These interfaces will be used by
data-consuming application. Our structure uses SQL server as a
storage for the data tier.

Data Set

Windows Form User
Interface

Data Tier

DataGrid

Client
Application

The Project Application

Presentation Tier

 OLEDB

Bearings database

OleDbConnection

OleDbCommand

OleDbDataAdapter

Data Table

Data Row

Show the results

Retrieved

Convert

Middle Tier

Figure 1: System architecture of our proposed framework

Main program

Data tier connection codes

User interface codes

C# manipulation codes

 The Microsoft Visual C# class
 for transforming the user’s
 requests to SQL statement

Using instances and methods of the class

Figure 2: Main components of the program

The last is the presentation tier consisting of DataSet,
DataTable, DataRow and DataGrid, one could be a subset of
another, as shown in Figure 1. The key task of the presentation
tier is to support the windows user interface. While DataSet is in
the presentation tier, the datasource where it retrieves data from
is in the data tier. OleDbDataAdapter class in the middle tier
serves as a bridge between DataSet and the datasource by

sending the command to retrieve the required set of data.
DataTable is a subset of DataSet. DataRow is a further subset of
DataTable. A set of queried results is then shown through the
view command in DataGrid. DataSet, DataTable, DataRow and
DataGrid are also .NET framework class libraries. Figure 2 shows
the major components of the program Implementation. The main
program of the development consists of a set of user interface

codes, data tier connection codes, and manipulation codes with
the Microsoft® Visual C# class. The user interface codes retrieve
what the user requires and then display the solution or the part
found after processing at any steps of the search upon the user’s
requests. The data tier connection codes send the commands,
connect to the server and pull the required information from the
data tier. The C# manipulation codes create particular instances
in order to use the class methods so that they could transform
the user’s requests to SQL statements as well as SQL syntax.
That is the C# manipulation codes are associated with
OleDbCommand in the middle tier.

The developed system architecture is applied to bearing
selection as a case study in this paper. The structure of bearing
database normally consists of several types of bearings, such as
deep groove ball bearings, angular contact ball bearings,
spherical roller bearings, single thrust ball bearings, etc. Each
type of bearings also requires numerous and different design
considerations which can result in a large number of fields in the

database. The structure of bearing database is shown in Figure
3. For ease of illustration, only 3 fields are presented for deep
groove ball bearings. In the actual database, each type of
bearings could have up to about 10 – 20 fields. Users can select
any number of the required fields, with each of the fields in any
order, to search for the parts.

For example, if a user selects a required dynamic load of
1100 N (step 1) and then chooses to view the results, the parts
with designations 634 and 625 will both be available, see Figure
4. However, if the user would like to filter more with the required
mass of 0.0050 kg (step 2) before viewing the results, only the
part with designation 625 will be available. Users can view the
results at any step and filter the results as much as they like to
narrow the scope of feasible parts that fit their design tasks.
Figure 5 summarizes the search and filter mechanism as a
flowchart of instructions for the users to use the program.

A few program interfaces during the search and retrieval
operations are shown in Figure 6. Figure 6.1 consists of two
listed boxes and a DataGrid. First, users have to select a field, or
an attribute type, from the “Fields” listed box (on the right)
representing all bearing considerations that are available in the
bearing database. Once they press the “Select” button, the
“Details” listed box (on the left) will show all requirements
corresponding to the chosen field. After selecting a required value
and the users wish to view the results, they can do so by

pressing the “Result” button. The DataGrid will then display the
results at this stage with all attribute types. The users can choose
to view the configuration of each part by highlighting such a part
in the DataGrid and then click “See Picture”. The configuration of
the part will then appear in a new window as shown in Figure
6.2. The users can also check the units for the requirement fields
by clicking “See Unit”, so that the new window detailing such
units will appear as shown in Figure 6.3.

Designation Mass (kg) Static load (N) Dynamic load (N) …
634 0.0054 380 1100 …
625 0.0050 380 1100 …
635 0.0090 620 1720 …
… … … … …

Designation Mass (kg) Static load (N) Dynamic load (N) …
 634 0.0054 380 1100 …

625 0.0050 380 1100 …
 635 0.0090 620 1720 …

… … … … …
Figure 4: Identification of required parts from the search and

filter mechanism

Step 2 or Filtering Step1: select a member of mass field

Step 1: select the value 1100 N, a member of
dynamics load field

Bearings Database

Angular contact
ball bearing

Deep groove
Ball bearing

…

Figure 3: Structure of bearing database

A Bearing table

Figure 5: Flowchart of operating instructions to use the search
and filter program

4. Conclusions

4.1 The proposed search technique, developed on the
Microsoft® .NET framework, is particularly suitable and efficient
for mechanical component selection, such as bearings, as it can
properly manage a large number of fields that are normally faced
in the engineering design environment.

4.2 Within the certain structure of engineering components,
the proposed program can reduce time to search, comparing with
the scanned paper catalogs, as the matching accuracy with one-
time keyword search is low.

4.3 The program offers flexibility during the search and
retrieval operations. The user can select, in any order, any
number of required fields or considerations. The user can also
choose to view the results at any stage of the search. This is
particularly useful for designers during the trial-and-error stage of
conceptual design, as the designers can see many potential
alternatives and this encourages design exploration.

4.4 The program has been written with Microsoft® Visual
C#, a powerful object-oriented programming language with ease
of customization, so that it can be readily combined with and
reused by other engineering database projects.

5. Future Work

5.1 Ongoing work to complete the selection for other
mechanical components such as gears, shafts etc. are being
considered so that the total framework for mechanical component
search can be achieved.

5.2 The proposed technique could be directly linked to
other mechanical application programs, such as UniGraphics®,
AutoCAD® or others related, with the support of .NET framework.
This means that the technique could play a significant role in
streamlining the design activities for mechanical engineers and
designers.

5.3 With the support of Common Language Runtime (CLR)
from the Microsoft®.NET core technology, the implemented
codes will be compatible with other programming languages from
Microsoft®, such as Visual C++ and Visual Basic, and from third
parties, such as Lahey’s Fortran. Hence, the codes can be
integrated to enhance the capabilities of many complex software
written in those programming languages.

References
[1] Scanned paper and online catalog on the internet of
bearings, http://www.bcibearings.com.
[2] Scanned paper and online catalog on the internet of
bearings, http://www.xzsybearing.com/chan-pin-sj-english.htm.
[3] S. Sander, and Mogge, C., “Lösungssuche in Engineering-
Netzen–Stand der Technik und Zukunftsperspektiven”, In:
Meerkamm, H. (Ed.), “Fertigungsgerechtes Konstruieren-Beiträge
Zum 9. Symposium 1998”, Universität Erlangen-Nürnberg, 1998.
[4] R. Baeza-Yates, and Ribeiro-Neto, B., “User Interface and
Visualization”, Modern Information Retrieval, ACM Press, New
York, Addison-Wesley, 1999, pp. 284.

start

1. Select a required field, such as a dynamic load, a
static load, etc., from the listed boxes of all field
members available in the database

2. Select the requirement for the field chosen in step
1, such as the value of 1100 N for the required
dynamic load

3. Want to view the search
results at this stage?

4. The results, corresponding to requirements in step
1 and step 2, appear so that the user can view their
configurations

5. Want to filter more with
another required field?

Finish

No

No

Yes

Yes

[5] D. Young, and Shneiderman, B., “A graphical filter/flow
model for boolean queries: An implementation and experiment”,
Journal of American Society for Information Science, July 1993,
Vol. 44, No. 6, pp. 327-339.

[6] Microsoft, “Visual Studio .NET Walkthrough”, Microsoft®
Corporation, Chapter 2: Distributed application, 2001, pp. 36-37.

(6.1)

(6.2)

(6.3)

Figure 6: Examples of program interface

