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Abstract

A study on three finite element schemes, the Streamline
Upwind Petrov-Galerkin method, the Taylor-Galerkin method and
the Streamline Upwinding Finite Element method, for convection
dominated flow is presented to identify the most suitable scheme
for the analysis of transient viscous incompressible flow. These
schemes were examined with three pure convection problems
which are the pure convection of a cone in constant velocity field,
the mixing of a hot with a cold front problem, and the Smith &
Hutton test case. It has been found that the Streamline Upwind
Petrov-Galerkin method exhibits minimal dissipation error among

the three methods.

1. Introduction

Transient viscous incompressible flow is an important part of
the fluid-structure interaction problem which can be found in
many engineering applications such as wind-induced vibration of
a bridge, flow in an internal combustion engine, and pulsation of
the blood flow through an artery in biomechanical engineering.
The difficulties in the transient viscous incompressible flow
analysis are the non-linear phenomenon of the convection term
and the time discretization. Various finite element methods have
been proposed to analyze such problem. One of the most
successful techniques proposed for finite element method is the
Streamline Upwind Petrov-Galerkin method [1] which modifies the
weighting functions for using with the Galerkin's method.

Another method is the Taylor-Galerkin method [2] which
uses the Taylor series expansions including the second- and
third-order terms for marching the solution in time. The
procedure yields a generalized governing equation which is

discretized in time only with the spatial variable being left

continuous. Such equation is successively discretized in space
using the convectional Bubnov-Galerkin finite element method.

Another successful method is the Streamline Upwinding
Finite Element method [3]. The method evaluates convection
terms directly along the local streamline instead of modifying the
weighting functions and then, the Crank-Nicolson method is
implemented for time discretization.

This paper presents a comparative study of the three finite
element schemes namely, the Streamline Upwind Petrov-Galerkin
the Streamline

method, the Taylor-Galerkin method and

Upwinding Finite Element method for transient convection
dominated flow. Numerical solutions are obtained for three pure
convection problems which are the pure convection of a cone in
constant velocity field, the mixing of a hot with a cold front

problem and the Smith & Hutton test case.

2.  Finite Element Algorithms
21 Governing Equation

The following governing equation for pure convection is
considered herein to examine the performance of the finite
element schemes in discretizing the convection term.
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where d) is a quantity being transported by the flow field, t is the

time, U is the velocity components with j = 1, 2.

2.2 Streamline Upwind Petrov Galerkin Method (SUPG)
To derive the finite element equations, the three-node
triangular element is used in this study. The element assumes

linear interpolation as,



o(x,y)=N, ¢, (@)

where i = 1, 2, 3 and N; is the element interpolation functions.
Then, the method of weighted residuals is applied to the
governing equation (1) with the modified weighting function (3)
excluding the time derivative 00/t to which the standard

Galerkin weighting of N, is attached,
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The procedure leads to the discretized finite element equations in

the form,
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where €2 is the element area, At is the time increment, the
superscript N is the time level. These element equations are
assembled to yield the global equations. After that, nodal
boundary conditions and initial conditions are imposed prior to

solving for the transport property, (1), at each time step.

2.3 Taylor Galerkin Method (TG)

To develop discretized finite element equations by the
Taylor-Galerkin method, a forward-time Taylor series expansion is
employed by including the second- and third-time derivatives to

the time derivative term of governing equation (1) as follows,
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and then, combine equations (6-8) with equation (1) to yield,
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The last term in equation (9) originates from the third time
derivative term in the Taylor series expansion. After substitution
o¢/ot by (6" — ¢“)/At , such term is transferred to the left-
hand side of the equation. Then, by applying method of weighted
residuals with the standard Galerkin weighting function, the finite

element equations are obtained in the form,

[K]{o™" -¢"} = {R} (10)

[x] = J[{N}LNF%{MS—}HQ?—:J dQ (1)
ot ele)

The above element equations from the Taylor-Galerkin method
are assembled to form the global equations, nodal boundary
conditions and initial conditions are applied prior to solving the

system of equations.

2.4 Streamline Upwinding Finite Element Method (SUFE)
For the streamline upwinding finite element formulation, a
special treatment for the convection terms is incorporated. These
terms are approximated by a monotone streamline upwinding
formulation to be used with the triangular element [4]. In this
approach, the convection term is first written in the streamline

coordinates as,
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where U, and 8/0s are the velocity and the gradient along the
streamline direction, respectively. These terms are evaluated by
a streamline tracing method which keeps track of the direction of
the flow within the element.

Using the standard Galerkin approach, the governing
equation is multiplied by weighting function, N, , to yield the

element equations in the form,

[M]{ag/at} + [Al{e} = 0 (14)



where the coefficient matrix [A] contains the known
contributions from the convection term and the matrix [M] is
similar as shown in Eq. (6a). For time discretization, the
recurrence relations [5] is applied by the substitution of 8¢/8t
with (@™ —¢")/At and tet {¢} = 1-0){0" }+0 o™},
where 6= 0.5 for Crank-Nicolson method. Then, the finite

element equations (14) become,
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where the {d)"”} on the left-hand side of the equation are

unknowns, and all of the terms on right-hand side are known.

3. Results and Discussion
In order to examine and compare the ability of the above
finite element schemes, the three test case problems are

presented in this section.

3.1 The Pure Convection of a Cone in Constant Velocity Field

This test case is chosen to evaluate the ability of each finite
element scheme in capturing steep gradients of a cone which
advected in a constant velocity field. The computational domain
is a rectangular region as illustrated in Fig. 1 and the initial shape

of a cone is defined by Eq. (16) and is shown in Fig. 2.
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The velocity field is specified to be uniform over the entire

domain and is given by

u(x,y) =1 (17a)

v(x,y) = 0 (17b)
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Fig. 1 - Problem statement of the pure convection of a cone.

The time step of 0.01 is used in this study. To ensure that

the cone moves past completely the entire domain, the total

number of time steps equal to 200 is selected. Figure 3 shows
the exact solutions of a moving cone in constant velocity field at

each time step.
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Fig. 2 - Initial shape of a cone in constant velocity field.

Fig. 3 - Exact solutions of a cone in constant velocity field.

To evaluate the efficiency of the studied schemes, the
predicted heights of the cone at t = 1.5 are compared with the
height of the exact solution as shown in Table 1. The table
indicates that the height of the cone from the Streamline Upwind
Petrov-Galerkin method and the Taylor-Galerkin method was
found 99.7 percent of its original value, indicating the minimum

dissipation error.

Table 1 - Compare the height of a cone at t = 1.5 of the

studied schemes with the exact solution.

The height of a cone Error (%)

Exact 0.750 -
SUPG 0.748 0.3
TG 0.748 0.3
SUFE 0.451 39.9




3.2 The Mixing of A Hot with a Cold Front Problem

The second test case is used to study a narrow region of
high temperature gradient from top to bottom called a “front”
which is then twisted by a steady vortex similar to that observed
on daily weather maps [6-7]. The computational domain is the
square region and is defined by —4 < x, y < 4 as shown in Fig. 4.

The tangential velocity of the vortex is given as,
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where V. is the tangential velocity of the vortex and r is the
distance from the origin of the coordinate system. For the
Cartesian coordinates, the velocity components can by expressed

as,

u(x,y) = - ’r’ Vy () (19a)
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In this case, the analytical solution [8] of the governing equation
(1) s,
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Fig. 4 - Computational domain and streamline contours of

a hot with a cold front in steady vortex problem.

The initial condition, calculated from Eq. (20) att = 0, is
shown in Fig. 5. The numerical solution contours, obtained after
the front has twisted for 4 time units or t = 4, and the exact
solution at this time are shown in Fig. 6. To evaluate the
accuracy of the studied schemes, the relative errors of Eq. (21)

are calculated and illustrated in Table 2.
[ 2
z | ¢ &S q)exactl
n

where € is the relative error and n is the number of node.
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Fig. 5 - Contour plots of the initial condition for the mixing

of a hot with a cold front problem.
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Fig. 6 - Contour plots of the numerical solutions

and exact solution.

Table 2 - Relative error of the studied schemes att = 4,

Relative error, €

SUPG 1.746 X 107
TG 1673 x 10"
SUFE 8.841 x 10

Table 2 shows that Taylor-Galerkin method can provide the
lowest relative error compare to the other methods and the
contour plots is in very good agreement with the exact analytical

solution.

3.3 Smith & Hutton Test Case

The last test case is first presented by Smith and Hutton [9].
The geometry for this problem is the rectangular domain as
shown in Fig. 6. The velocity field is given by the following

relations,



u(x,y) = Zy(lﬂxz)
v(x,y) = —2x(1—y2)

This velocity field produces the pattern of streamlines depicted in

(22a)

(22b)

Fig. 7. With the exception of the outlet part of the boundary, ¢ is

specified on the boundary as,

¢ = 1+tanh[102x+1)] y=0, -1<x<0 (23a)
x=-1 0<y<l

¢ =1-tanh10< y= 1 -1=x=1 (23b)
x= 1 0<y<l

The value of ¢ is essentially 0 on x = 1 and y = 1 and is closed
to 2 at the origin of coordinates. The climb from 0 to 2 occurs

very sharply halfway along the inlet side.
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Fig. 7 - Geometry and streamline contours

for Smith and Hutton test case.

Fig. 8 - Distribution of ¢ in pure convection at steady state.

For pure convection problem, the inlet profile should
propagate to the exit plane without any diffusion as shown in Fig.
8. Figures 9a-c show the propagation of (I) of each finite element
scheme before it reaches the steady state. The figures indicate

that the Streamline Upwind Petrov-Galerkin method and the

Taylor-Galerkin method provide sharp discontinuity but with non-
physical spatial oscillations. The Streamline Upwinding Finite

Element method, however, does not generate any oscillations.

(b) Taylor Galerkin method.

t=0.5 ¥ =10

(c) Streamline Upwinding Finite Element method.

Fig. 9 - Distribution of { of three finite element schemes

at each time step.

To evaluate the performance of the algorithms in capturing
the steep gradient, the profiles of d) along the outlet boundary of
the domain from each algorithm are compared as shown in Fig.
10. The Figure shows that, at steady-state condition, the
Streamline Upwind Petrov-Galerkin method exhibits the best
performance in capturing such gradient while the solution from
Streamline Upwinding Finite Element method produces the least

accurate result.
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Fig. 10 - Comparison of the distributions of (1) along
the outlet boundary.

4. Conclusions

This paper presents a study of the three finite element
formulations which are the Streamline Upwind Petrov-Galerkin
method, the Taylor-Galerkin method and the Streamline
Upwinding Finite Element method for analysis of transient
convection dominated flow. The discretization of each
formulation and its finite element equations are described. The
capabilities of the finite element algorithms have been evaluated
by three pure convection test case problems. The computational
results show that, from the point of view of the solution accuracy,
the Streamline Upwind Petrov-Galerkin can capture steep

gradient accurately with slight spatial oscillations.
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