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Abstract 

In this paper, the use of multiobjective evolutionary optimisers for passive vibration suppression of an automotive 

component is demonstrated. The component is used to connect a car engine to some point of a car body between the front seats. 

Under such a circumstance, the structure is subject to several mechanical phenomena e.g. stress failure, fatigue, vibration 

resonance, and vibration transmissibility. The optimisation problem is posed to find structural shape and size such that 

maximising structural natural frequency and simultaneously minimising structural mass while constraints include stress failure 

and displacement. The multiobjective optimiser employed is the multiobjective version of Population-Based Incremental 

Learning (PBIL) with and without using a surrogate model. The optimum results obtained are illustrated and discussed. It is 

found that the proposed design scheme is effective and efficient for an automotive component design.   

Keywords: multiobjective evolutionary algorithm; shape optimisation; Pareto optimal front; automotive component; Vibration 

suppression

1. Introduction 

         Due to highly increasing competitiveness in 

automotive industry, many car manufacturers require to 

develop new products to offer to customers. Therefore, 

automotive components are always improved by means of 

design optimisation [1-2].  

Practical engineering design problems are usually 

assigned to find the best solutions of design variables that 

lead to optimised design objectives whilst fulfilling all the 

predefined constraints. Often, the design problem has more 

than one objective which is called multiobjective 

optimisation. The most popular method used for the 

multiobjective optimisation is Evolutionary Algorithms 

(EAs) [3-6]. The method can explore a Pareto optimum 

front within a single run and without requiring function 

derivatives. However, a lack of search consistency and low 

convergence rate are the inevitable drawbacks of the 

multiobjective evolutionary algorithms (MOEAs) [5]. For 

this reason, the hybridisation of  a surrogate model method 

and multiobjective optimisers has been invented and this 

approach is found to be very powerful and effective [6].         

 This paper presents the multiobjective 

evolutionary optimisation of an automotive component. 

The component is used to connect a car engine to some 

point of the body between the front seats. The structure is 

subject to several mechanical phenomena such as stress 

failure, fatigue, vibration resonance, and vibration 

transmissibility. The design problem is posed to find 

structural shape and size such that maximising structural 

dynamic stiffness while, at the same run, minimising 

structural mass. Design constraints include stress and 

displacement. Three dimensional finite element analysis 

(FEA) is employed to evaluate the objective and constrain 

function values. The optimum solutions called Pareto 

solutions are explored by using PBIL incorporating with a 

Gaussian process surrogate model and a Latin Hypercube 

Sampling technique. The proposed design approach is 

found to be numerically powerful and effective.   

 

 

2. Surrogate model method 

The term‟ surrogate model‟ used in an optimisation 

process is an approximate model which is used to 

approximate the objective and constrain functions in 

optimisation problems [7]. Such a design strategy is useful 

when dealing with optimisation problems with expensive 

function evaluation, limited function values available, and 

problems that need to perform an experiment to evaluate 

their function values. The hybrid of the surrogate model 

with an optimiser can be achieved in several ways. One of 

the commonly used strategies is that, during the main 

optimisation process, some design solutions have been 

evaluated. Those solutions and their corresponding 

objective and constraint values are used to build a surrogate 

model. This model is then used as an approximate function 

evaluation. The optimisation with the surrogate model is 

performed with significantly less running time when 

compared with using the actual function evaluation. The 

obtained optimum solution of this design phase is brought 

to the main optimisation process where its actual function 

value is determined. With a highly accurate surrogate 

model, this design strategy is far superior to purely using an 

evolutionary algorithm. The computational steps are 

repeated until the termination conditions are fulfilled.  The 

commonly used surrogate models for optimisation are 

Kriging model [8], radial basis interpolation [6], 

polynomial interpolation [9] and neural network [10]. In 

this paper, only the Kriging model is employed. 

2.1. Kriging Model  

A Kriging model (also known as a Gaussian 

process model) used herein is the famous MATLAB 

toolbox named Design and Analysis of Computer 

Experiments (DACE) [8]. The estimation of function can 

be thought of as the combination of global and local 

approximation models i.e.    
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)()()( xxx Zfy               (1) 

where
 

)(xf  is a global regression model, )(xZ is a 

stochastic Gaussian process with zero mean and non-zero 

covariance representing a localised deviation, and x is a 

design variables vector. In this work, a linear function is 

use for a global model, which can be expressed as:   

 
fβ

T


n

1i
ii0 xββf                                          (2) 

where β = [β0, …, βn]
T, f = f(x) = [1, x1, x2, …, xn]

T. The 

covariance of Z(x) is expressed as:  

       
)],([))(),(( 2 qpqp RZZCov xxRxx                             (3) 

for p, q = 1, …, N where R is the correlation function 

between any two of the N design points, and R is the 

symmetric correlation matrix size NN with the unity 

diagonal [8]. The correlation function used in this paper is  

     ))()(exp(),( qpTqpqpR xxθxxxx 
                      

(4) 

where i are the unknown correlation parameters to be 

determined by means of the maximum likelihood method. 

Having found  and , the Kriging predictor can be 

achieved as  

      ) ()()( 1
FβyRxrβxf  TTy                               (5) 

Where   = [f(x1), f(x2), …, f(xn)]T and   ( )  
  (    )  (    )    (    ) . For more details, see [8]. 
 

3. Multiobjective Population-Based Incremental 

Learning (MOPBIL) 

PBIL algorithm is an evolutionary optimiser based 

upon binary searching space. The PBIL approach evolves its 

population based upon the so-called probability vector, the 

probability of having „1‟ elements on each column of a 

binary population. The example of how the probability 

vector works is shown in Fig.1 which implies that one 

probability vector can produce a variety of binary 

populations. 

In the multiobjective optimisation, more probability 

vectors should be used in order to obtain a more diverse 

population; therefore, it is called a probability matrix. 

Starting with an initial probability matrix that have all 

elements as “0.5”, and an initial Pareto archive, the binary 

population according to the initial probability matrix is then 

created. The binary population is decoded and objective 

values are evaluated. The best binary solutions, whether it is 

based on minimisation or maximisation, is chosen to update 

the probability vector 
new
jiP , for the next iteration using the 

relation 

 RjR
old
ji

new
ji LLPP b)1(,,                                  (6) 

where LR is called the learning rate, a value between 0 and 

1, to be defined and bi is the mean value of the jth column of 

the randomly selected non-dominated binary solutions. For 

this study, LR is set as: 

  

)1.0or 1.0(5.0  randLR                               (7) 

where rand [0,1] is a uniform random number. Mutation 

on the thi  row of the probability matrix is allowed to take 

place by a predefined probability and it can be expressed 

as: 
 ss

old
ji

new
ji )mrandmPP 1or  0()1(,,                    (8) 

where 
s

m  is the amount of shift used in the mutation. 

 
Fig.1 Probability vector and their corresponding 

populations 

The updating process is completed when all rows of 

the probability matrix are changed. The probability matrix 

is updated and the external Pareto archive is improved 

iteratively until convergence is achieved.  

 In cases where the total number of the non-dominated 

solutions is greater than the archive size, the archiving 

operator called the normal line method [4] is activated to 

remove some solutions from the archive. The archiving 

technique is used to prevent excessive use of computer 

memory during an optimisation process. The basic idea of 

the normal line technique is used to remove some non-

dominated design solutions while maintaining population 

diversity in the archive. For more details of multiobjective 

PBIL, see [11]. 

4. Design Problem 

 This paper presents a multiobjective optimisation 

design problem for an automotive part as shown in Fig. 2. 

The component is used to connect the car engine with the 

car body. Under the working conditions, this structure is 

subject to several mechanical phenomena e.g. stress, 

fatigues, vibration resonance, and dynamic force 

transmissibility. Also, the structural displacement due to a 

number of loading conditions should not exceed the 

predefined limit. 

 

Fig. 2 Automotive part 
 

 
Fig. 3 a. Sizing variables 

 

Part to be designed 

population 1      population 2       population 3  

   0 0 1 1            0 1 1 0     0 1 0 1 

   1 1 0 0            1 1 0 0     1 0 0 1 

   0 0 1 1            1 0 1 0     0 0 0 1     

   1 1 0 0            0 0 0 1      0 1 0 0 

Probability Vectors 

[0.5,0.5,0.5,0.5]   [0.5,0.5,0.5]  [0.25,0.5,0,0.75] 
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Fig. 3 b. Shape variables 

  

The multiobjective optimisation problem is posed to 

find structural shape and size such that maximising 

structural natural frequencies and minimising mass whereas 

constraint include stress failure and displacement, which 

can be expressed as 

Min:  )](),([ 21 xxf ff                                                 (9) 

Subject to 
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where x is a design variable vector (all variables are 

displayed in Fig. 3). 1f  is a function of mass. 2f is a 

function of dynamic stiffness (or natural frequencies). x , 

1f  and 2f  can be express as : 

 T,x,x,z,z,z,z,z,t,t,tt }{ 21543214321x  

and 
massf 1         (10) 

and 

 

54321

2

1

 
f .     (11) 

The other parameters are defined as follows: 

max
σ = Maximum von Misses stress 

allowable
σ = Allowable stress 

 ti =Shape thickness 

 zi=Position of the key points in z-axis direction 

 xi= Position of key point in x-axis direction 

i = mode ith natural frequency of a structure 

 Figs. 3a. & 3b. display all of the sizing and shape 

design variables. The thicknesses (ti in Fig. 3 a.) are the 

thickness of the sub-regions of the automotive component 

as shown. The zi parameters determine the key points in 

vertical direction as located in Fig. 3 b. These key points 

are used to generated a spline curve so as to define the 

shape of the part. The xi parameters define the horizontal 

position of the key points on the component. 

The structure is acted upon by three load cases 

(bending, twisting and swaying loads) at the right-hand 

cylinder part. The objective and constraint function values 

are evaluated by using FEA. The evaluation process is 

carried out in such a way that, with the given input design 

variables as defined, the shape and dimensions of the 

structure are created. The finite element analysis is then 

performed. Finally the computational results can be 

obtained. Function evaluation is somewhat time-

consuming, which means it is difficult to apply a common 

evolutionary algorithm to solve the optimisation problem 

(9). As a result, the surrogate-assisted evolutionary 

algorithm is developed to deal with such a difficulty.  

To tackle multiobjective optimisation as defined 

in (9), the MOPBIL algorithm and the surrogate-assist 

MOPBIL (MOPBIL-SM) are used to find Pareto optimal 

solutions. MOPBIL-SM is a design strategy that exploits 

the surrogate model to create an initial Pareto archive rather 

than starting with a randomly generated population as with 

the traditional multiobjective PBIL. 

The computational steps for generating an initial 

Pareto archive by using the surrogate model are as follows: 

I. Sample a set of design variable vectors from 

design experiment by using the LHS technique. 

II. Evaluate design functions by FEA. 

III. Constructing a surrogate model by using the 

Kriging technique. 

IV. Use MOPBIL find Pareto optimal set based on 

the surrogate model.  

V. Find the real function values of the Pareto 

optimal front obtained from optimising the 

approximate Kriging model (step IV). 

VI. Use a non-dominated sorting technique to find 

the initial Pareto archive 

 

The LHS is used to sample 100 design solutions 

for constructing a surrogate optimisation model. 

Subsequently, with this initial Pareto archive, the common 

MOPBIL is operated where the population size is 30, the 

number of iterations is 10, and archive size is set as 30. 

5. Results and Discussion 

 The progress of Pareto optimal solutions of the 

optimisation design problem by using the hybridisation of a 

surrogate model method and the MOPBIL is displayed in 

Fig. 4. It can be seen that the Pareto front from iteration 1 

to iteration 10 has slight improvement. This means that the 

initial front generated by means of a surrogate-assisted 

approach is very powerful.  

 
Fig.4 Pareto front of the MOPBIL-SM 

 

 In order to verify the effectiveness of the hybrid 

approach, the original MOPBIL without the use of a 

surrogate approach is performed with the same population 

and archive sizes while the total generation number is set to 
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be 30. This implies that the original MOPBIL uses 3030 

actual function evaluations which is approximately twice 

the number of evaluation used by MOPBIL-SM (100 + 

1030 evaluations). The results from the former are termed 

as MOPBIL whereas the results obtained from the later are 

named MOPBIL-SM. Figs.5-7 compare the Pareto fronts 

obtained from using MOPBIL-SM at the generations of 1, 3 

and 5, and using MOPBIL at the generations of 10, 20 and 

30 respectively. It can be found that the results from using 

MOPBIL-SM are better than those obtained from using the 

original MOPBIL even with a far smaller number of finite 

element analyses. That means the hybrid approach is far 

superior to the original optimiser. 

 
Fig.5 Comparative Pareto fronts: MOPBIL 10 Generations 

versus MOPBIL-SM 1 Generation 

 
Fig.6 Comparative Pareto fronts: MOPBIL 20 Generations 

versus MOPBIL-SM 3 Generations   

 
Fig.7 Comparative Pareto fronts: MOPBIL 30 Generations 

versus MOPBIL-SM 5 Generations   

   
Fig.8 Pareto front from MOPBIL-SM 

 

 The Pareto optimal solutions of the MOPBIL-SM 

shown in Fig. 8 have the corresponding design solutions as 

shown in Fig. 9. The optimum components have an obvious 

variation for the design variables t2 , z3 and z5, while the 

other variables have a slight variation. It can be seen that, 

with one optimisation run, we can have a number of 

optimum components for decision making.    
 

 

 

 

 

 

 
Fig.9 3D automotive parts corresponding to selected 

solutions in Fig. 8 

6. Conclusions  

 The multiobjective 3D shape and sizing 

optimisation problem of an automotive component using 

the hybridisation of a surrogate Kriging model and 

MOPBIL is demonstrated. The results show that the 

proposed approach is efficient and effective for solving the 

design problem. The new design strategy outperforms the 

original PBIL optimiser based upon the total number of 

function evaluations. An improved design strategy 

employing much less function evaluations is the target for 

future work.   
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