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Abstract 
 An adaptive meshing technique is combined with the 
Discrete Kirchhoff Triangle (DKT) to analyze plate 
bending problems.  The DKT plate bending finite element 
formulation with detailed finite element matrices are 
derived.  An adaptive meshing technique is applied to 
generate small elements in the regions of high stress 
gradient to improve the computed solutions.  Larger 
elements are generated in the other regions to reduce the 
problem unknowns and thus the computational time.  The 
efficiency of the combined method is evaluated by 
several problems.  Results show that the combined 
method can improve the solution accuracy and reduce the 
computational effort.  
 
Keywords: finite element, adaptive mesh, plate bending, 
Discrete Kirchhoff Triangle  
 
1. Introduction 
 The finite element method has been widely used for 
the analysis of plate bending problems.  Different types 
of plate bending elements have been developed during 
the past decades.  One of the element types which provide 
high solution accuracy for the analysis of plate bending, 
is the Discrete Kirchhoff Triangle (DKT) [1].  The three-
node triangular DKT element is studied in this paper in 
order to combine with an adaptive meshing technique to 
improve the overall analysis solution accuracy.  Detailed 
formulation and the corresponding finite element 
matrices of the DKT element are presented.  The 
performance of the DKT element alone will be evaluated 
by a problem that has exact solution.  The adaptive 
meshing technique presented herein generates small 
clustered elements in the regions of high stress gradients 
to provide higher solution accuracy.  At the same time, 
larger elements are generated in the other regions to 
reduce the total number of unknowns and the 
computational time.  Because the technique generates 
appropriate element sizes automatically, it is thus suitable 
for complex problems where a priori knowledge of the 
solutions does not exist.  Herein, the technique has been 
combined with the DKT element for the analysis of plate 
bending in three-dimensional structures.  Such structures 

are commonly modeled by using two-dimensional 
membrane and plate bending finite elements.   
 The governing differential equations for predicting 
the structural response due to mechanical load will be 
presented first.  Then, the corresponding finite element 
equations and the associated element matrices will be 
derived and presented.  The basic concepts of the 
adaptive meshing technique and the selection of the 
meshing parameters used for construction of new meshes 
will be explained.  Finally, the performance of the DKT 
element and the adaptive meshing technique are 
evaluated by analyzing several examples. 
 
2. Governing Equations 
 The equations for the in-plane deformation and the 
transverse deflection of a plate that lies in a local x-y 
coordinate system are briefly described herein. 
 
2.1 In-Plane Deformation 
 The equations for the in-plane deformation are given 
by the two-dimensional equilibrium equations in the form 
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The stress components yx σσ , and xyτ  are related to the 
strain components by the generalized Hooke’s law as  
  { } [ ]{ }εσ C=  (3) 
where { }σ  contains the stress components yx σσ , and 

xyτ , and [ ]C  is the material stiffness matrix.  For the 
plane stress case these material matrices are given in Ref. 
[2].  The vector of the strain components is related to the 
displacement gradients given by, 
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2.2 Transverse Deflection 
 The equation for the transverse deflection, w, in the 
z-direction normal to the x-y plane of a thin plate, is given 
by the equilibrium equation [3] as,  
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where ( )yxp ,  is the applied lateral load normal to the 
plate and D  is the bending rigidity.  The bending rigidity 
is defined by, 
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where E is the modulus of elasticity, t  is the thickness of 
the plate and ν  is the Poisson’s ratio. 
 
3. Derivation of Finite Element Equations 
 The constant strain triangle (CST) and the Discrete 
Kirchoff Triangle (DKT) finite elements are used for the 
in-plane deformation and the transverse deflection, 
respectively. 
 
3.1 Constant Strain Triangle (CST) 
 The three-node CST element assumes a linear 
displacement distribution over the element.  The element 
equations can be derived by applying the method of 
weighted residuals to the governing differential 
equations, Eq. (1) and (2), which leads to the element 
equations in the form of, 
  [ ]{ } { }FK mm =δ  (7) 
where the vector { }mδ  contains the element nodal 
unknowns of the in-plane displacements in the element 
local x-y coordinate directions.  There are two in-plane 
displacements per nodes or six unknowns per element.  
The element stiffness matrix, [ ]mK , that appears in Eq. 
(7) is defined by Eq. (8). 
  [ ] [ ] [ ][ ] AtBCBK m

T
mm =  (8) 

where the strain-displacement interpolation matrix, [ ]mB , 
is given in Ref. [2].  The vector { }F  on the right-hand-
side of Eq. (7) contains the applied mechanical forces at 
element nodes. 
 
3.2 Discrete Kirchoff Triangle (DKT) 
 The three-node DKT element assumes a cubic 
distribution of the transverse deflection over the element 
[1].  The element equations can be derived by applying 
the method of weighted residuals to the plate bending 
equations, Eq. (5), which leads to the element equations 
in the form, 
  [ ]{ } { }pbb FK =δ  (9) 

where the vector { }bδ  contains the element nodal 
unknowns of the transverse deflections and the rotations.  
Each node has a transverse deflection in the element local 
z-coordinate direction and two rotations about the 
element local x-y coordinate directions.  Thus there are 
nine degrees of freedom per element.  The element 
stiffness matrix, [ ]bK , and the nodal force vector due to 
the applied loads, { }pF , are defined by,  

 [ ] [ ] [ ][ ]dABDBK b
A

T
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where the strain-displacement interpolation matrix, [ ]bB , 
is defined by,  
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The coefficients kP , kq , kr  and kt , k = 4, 5, 6 depend 
on the element shape and are given by, 
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where the coefficients ijx and ijy , =ji, 1, 2, 3 are 
defined in terms of element nodal coordinates by,  

 jiij xxx −=  (22) ; jiij yyy −=  (23) 

The matrix [ ]D  in Eq. (10) is the plate material stiffness 
matrix defined by,  
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The above finite element matrices are in closed-form so 
that they can be implemented in the computer program 
directly [4].  
 
4. Adaptive Meshing Technique 
 
4.1 Adaptive Meshing concept 
 The basic idea of adaptive meshing [5] is to construct 
a completely new mesh based on the solution obtained 
from the previous mesh.  The new mesh will have small 
elements in regions of large changes in solution gradients 
and large elements in regions where the gradient changes 
are small.  Proper nodal spacings used for constructing a 
new mesh are determined by using the solid mechanics 
concept of finding the principal stresses, 1σ  and 2σ , 
from a given state of stresses, yx σσ , and xyτ , i.e., 
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 At a typical node in the previous mesh, the second 
derivatives of the key parameter for meshing, φ , 
(analogous to the stress components in Eq. (25)) are 

computed and the two eigenvalues (analogous to the 
principal stresses) are then determined,  
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The larger eigenvalue, ( )21,max λλλ = , is then selected 
for that node and the same process is repeated for all the 
other nodes.  Proper nodal spacings, denoted by h , used 
for constructing a new mesh are then determined from the 
condition required to procedure an optimal mesh;  
 =2hλ  constant 2

minmaxhλ=  (27) 
where maxλ  is the largest eigenvalue of all nodes in the 
previous mesh and minh  is the specified minimum nodal 
spacing for the new mesh.   
 
4.2 Meshing Parameters 
 The adaptive meshing technique requires a selection 
of proper key parameters (φ  in Eq. (26)).  For structural 
problems under mechanical load, stress is an appropriate 
choice.  However, the key parameter representing the 
stress should be a scalar quantity (directionally 
independent) such as the Von Mises stress defined in two 
dimensions by, 

( ) 2222 6
2

1
xyyxyxMisesVon τσσσσσ +++−=  (28) 

For plate bending analysis, the Von Mises stress is used 
as a key parameter for meshing simultaneously so that the 
new mesh can capture the high stress concentration. 
 
5. Applications 
 Three example problems are presented in this 
section.  The first example is chosen to evaluate the 
performance of the DKT plate bending element.  The 
second example demonstrates the effectiveness of the 
adaptive meshing technique combining with the DKT 
element.  The third example combines both the CST and 
DKT elements, and demonstrates the capability of the 
adaptive meshing technique for 3D plate structures. 
 
5.1 Partially loaded simply supported square plate 
 A square 2×2 m simply supported plate with a 
thickness of 0.01 m, subjected to a partially distributed 
load of 1 kN/m2, is shown in Fig. 1.  The plate is assumed 
to have the modulus of elasticity of 7.2×1010 N/m2 and 
the Poisson’s ratio of 0.25.  The exact transverse 
deflection can be derived [3] and is given by, 
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Due to symmetry, a quarter of the plate is analyzed.  The 
result of the transverse deflection obtained from the DKT 
element is shown in Fig. 2.  Figure 3 shows the predicted 
transverse deflections along the x-direction obtained from 
the DKT element as compared to the exact solution.  The 
figure shows good comparison of the two solutions. 
 

 
 
Figure 1. Problem statement of a simply supported 

square plate subjected to a partially distributed 
load.   

 

 
 
Figure 2. Predicted deflection of the plate using DKT 

plate bending element. 
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Figure 3. Comparative transverse deflections from DKT 
finite element model with the exact solution 
along x-direction for a simply supported square 
plate under partially distributed load.  

 
5.2 Plate with narrow cut subjected to vertical loading 
 The problem statement of the plate with narrow cut 
subjected to vertical loading is shown in Fig. 4.  The plate 
is subjected to the uniform vertical load p = 1 kN/m along 
one edge of the plate.  The initial unstructured mesh 
consists of 299 nodes and 543 elements as shown in Fig. 
5(a).  The Von Mises stresses obtained from this initial 

mesh solution are used as the key parameter for the 
adaptive remeshing.  The new adaptive mesh, with 849 
nodes and 1604 elements, is shown in Fig. 5(b).  Small 
elements are generated to concentrate in the region of 
high stress gradients near the end of the cutout to provide 
a more accurate stress solution.  The second adaptive 
mesh with 1493 nodes and 2846 elements and the third 
adaptive mesh with 1953 nodes and 3734 elements are 
shown in Fig. 5(c) and 5(d) respectively.  The figures 
show more refined elements are created in that region to 
capture the high stress concentration in order to increase 
the solution accuracy.  Figure 6 shows that the predicted 
maximum Von Mises stress converges to the value of 
2.40 GPa with the increase of the refined elements in the 
high stress concentration region.  The deflection of the 
plate and the Von Mises stress contours by using the third 
adaptive finite element mesh are also shown in Fig. 7 and 
Fig. 8 respectively.  Details of the Von Mises stress 
contours near the intense stress location are presented in 
Fig. 9. 
 

 
 
Figure 4. Problem statement of a plate with narrow cut 

subjected to vertical loading. 
 
 

   
(a)   (b) 

 

  
(c)   (d) 

 
Figure 5. Unstructured DKT finite element meshes:     

(a) initial mesh, (b) 1st adaptive mesh, (c) 2nd 
adaptive mesh, and (d) 3rd adaptive mesh. 

 
 It is important to note that the adaptive meshing 
technique automatically generates refined elements in the 

40 cm 19 cm 

19 cm 

p = 1 kN/m 
20 cm 

r = 1 cm 

x
y

z 

E = 1.9×1011 N/m2 
ν = 0.3 
thickness = 2 mm

  0 
- 0.002
- 0.004 

y 

x 

D
ef

le
ct

io
n 

p = 1,000 2N/m

z y 

x 

t = 0.01 m 

2 m

2 m 

1 m 

1 m 

E = 7.2×1010 N/m2 
ν = 0.25 



 

รวมบทความวชิาการ  เล่มท่ี 4 การประชุมวชิาการเครือข่ายวศิวกรรมเคร่ืองกลแห่งประเทศไทยครัÊ งท่ี 22        89                             

region of high stresses. A priori knowledge of the 
solution to the problem is not needed before performing 
the analysis. The technique thus provides an advantage 
over the standard finite element procedure especially for 
more complex problems, such as the structure which will 
be presented in next example, where a priori knowledge 
of the solution does not exist. 
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Figure 6. The convergence of predicted maximum Von 

Mises stress by using DKT adaptive finite 
element mesh. 
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Figure 7. Predicted deflection of the plate using DKT 3rd 

adaptive finite element mesh. 
  
 

  
 

Figure 8. Predicted Von Mises stress contours of the 
plate using DKT 3rd adaptive finite element 
mesh. 

 
 
Figure 9. Predicted Von Mises stress contours of the 

plate using DKT 3rd adaptive finite element 
mesh in the region of high stresses. 

 
5.3 Plate attached with roof-like section subjected to 
vertical loading 
 To demonstrate the capability of the adaptive 
meshing technique for stress analysis of more complex 
plate structures, a plate attached with roof-like section 
subjected to vertical loading is considered.  A problem 
statement of this example is presented in Fig. 10.  The 
square plate is clamped along the edge x=0 and subjected 
to the uniform vertical load along the opposite edge.   
 
 

 
 
Figure 10. Problem statement of a plate attached with 

roof-like section subjected to the uniform 
vertical load.   

 
 Due to symmetry, the right half of the plate is 
analyzed.  The initial unstructured coarse mesh consists 
of 264 nodes and 458 elements as shown in Fig. 11.  The 
predicted Von Mises stress contours of the initial mesh 
are shown in Fig. 12.  With these stresses, the new 
adaptive mesh with 865 nodes and 1645 elements shown 
in Fig. 13 is constructed.  Small elements are generated to 
concentrate in the high stress regions at the corner of the 
intersection between the square plate and the roof-like 
section, while larger elements are generated in the other 
regions.  The new refined mesh provides a more accurate 
and smooth stress distribution solution as shown in Fig. 
14.  The deflection of the new mesh of the plate is also 
shown in Fig. 15. 
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Figure 11. Initial finite element mesh of the plate attached 

with roof-like section. 
 

 
 

Figure 12. Predicted Von Mises stress contours of the 
plate attached with roof-like section using 
initial finite element mesh. 

 

 
 

Figure 13. Adaptive finite element mesh of the plate 
attached with roof-like section with 865 nodes 
and 1645 elements. 

 

 
 
Figure 14. Predicted Von Mises stress contours of the 

plate attached with roof-like section using 
adaptive finite element mesh. 

 
 

Figure 15. Predicted deflection of the plate attached with 
roof-like section using adaptive finite element 
mesh. 

 
6. Conclusion 
 An adaptive meshing technique combined with the 
DKT finite element for plate bending analysis was 
presented.  The DKT plate bending element has been 
combined with the adaptive meshing technique to 
improve the solution accuracy and reduce the 
computational effort.  The examples presented in this 
paper demonstrated that the adaptive meshing technique: 
(1) reduces modeling effort because a priori knowledge 
of the solution is not required; (2) provides improved 
solution accuracy by adapting the mesh to the physics of 
the solutions; (3) reduces the total number of elements 
used in the finite element modeling by automatically 
generating small elements in the regions with high 
solution gradients and large elements in the other regions. 
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