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Abstract 

The adaptive nodeless variable finite element method 
for convectively-cooled solids is presented.  The nodeless 
variable finite element method is developed for analyzing 
heat transfer in solids that is coupled with the flow in 
channels.  The nodeless variable element employs 
quadratic interpolation functions to provide higher 
solution accuracy without requiring actual nodes.  The 
coupled fluid/solid solution is further improved by 
incorporating an adaptive meshing technique.  Several 
examples are presented to demonstrate the efficiency of 
the combined method. 
 
Key words: Adaptive mesh, nodeless variable Finite 
element, convectively-cooled solids. 
 
1. Introduction 

Design and analysis of convectively-cooled solids are 
encountered in many practical engineering problems.  
Currently, the finite element method is widely used to 
solve for the temperature distribution in solids, as well as 
the behavior of the fluid flow [1-3].  The problem is more 
complicated when the coupled analysis is required to 
predict the solid and fluid behavior simultaneously.  Such 
analysis is known as the conjugate heat transfer [4-5] that 
needs immense effort to solve the Navier-Stokes 
equations of the fluid.  Recently, the nodeless variable 
finite element [6-7] has been developed to provide higher 
solution accuracy without requiring actual nodes.  In 
addition, the solution accuracy can be further improved 
by using the adaptive finite element technique [3,6-7].  
The technique generates small elements clustered in the 
high temperature gradient regions to provide accurate 
solution.  Larger elements are generated in the other 
regions where the temperature is uniform to reduce the 
number of unknowns and computational time. 

In this paper, an adaptive nodeless variable finite 
element method is developed to predict the temperatures 
in the solid and the fluid flowing in a channel.  
Convection heat transfer between the solid and fluid is 
included along the solid/fluid interface.  For a fluid flow 
through a channel, the fluid analysis may be treated as 
one dimensional flow.  In this case, the couple solid/fluid 
analysis can be simplified so that the computational effort 

is reduced significantly.  Heat transfer in the fluid thus 
can be characterized by the fluid bulk temperature and the 
convection coefficient.  The solid/fluid heat transfer is 
then coupled and their solutions can be solved 
simultaneously.  The nodeless variable finite element is 
employed to improve the predicted temperature 
distribution.  The nodeless variable finite element uses 
the quadratic interpolation functions to describe the 
temperature distribution over the element.  The use of the 
nodeless variable finite element can also be referred to as 
a hierarchical methodology, since the element reduces to 
the standard linear element when the nodeless variables 
are constrained to zero or eliminated. 

To further improve the predicted solution of the solid 
and fluid temperatures, an adaptive finite element 
technique has been incorporated.  Examples are presented 
in the paper to demonstrate the efficiency of the proposed 
method.  These examples are a convectively-cooled solid 
subjected to uniform heating and a plate with intense 
heating. 
 
2. Theoretical formulation 
2.1 Governing equations 

The equations which govern convectively-cooled 
solids are the one-dimensional conservation of energy 
equation for the fluid flow, and the two-dimensional 
conservation of energy equation for the solid.  These 
governing differential equations are, 
Energy equation in fluid, 

( )
2

2
f f

f f f f f f f s

T T
c u A k A hp T T

x x
ρ

∂ ∂
− − −

∂ ∂
   

0f fQ A− =   (1) 

Energy equation in solid, 
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where the subscript f and s are for the fluid and the solid, 
respectively; u is the velocity in x direction, ρ is the 
density, c is the specific heat, k is the coefficient of 
thermal conductivity, h is the convective heat transfer 
coefficient, p is the perimeter, Q is the internal heat 
generation rate per volume and T is the temperature. 
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2.2 Finite element formulation 
The nodeless variable finite element equations are 

derived using the method of weighted residuals.  The 
mass transport element and triangular element are 
employed in this study.  For both elements, the 
distributions of temperature over the elements are 
assumed respectively in the form 
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where Ni consists of the element interpolation functions 
and Ti is the vector of the unknown temperatures and the 
nodeless variables.  For the fluid, the nodal temperatures 
are T1 and T2, while T3 is the nodeless variable.  For the 
solid, the nodal temperatures are T1 through T3, while T4 
through T6 are the nodeless variables.  The element 
interpolation functions, N1 and N2 in fluid, N1 through N3 
in solid are the standard two-node element and three-node 
triangular element, respectively while N3 in fluid and N4 
through N6 in solid are the nodeless variable interpolation 
functions.  The interpolation functions implemented in 
this paper are, 
For fluid, 

N1 = 1- x/L  

N2 = x/L (5) 

N3 = 4N1N2   

For solid, 

N1 = L1  

N2 = L2  

N3 = L3  

N4 = 4L2L3  

N5 = 4L1L3  

N6 = 4L1L2 

where L in eq. (6) is area coordinates [8-9]. 

Li = (ai+ bix+ciy)/2A (7) 

To derive the nodeless variable finite element matrices, 
the method of weighted residuals is first applied to Eqs. 
(1) and (2).  Integration by parts is then performed using 
the Gauss theorem to yield the boundary terms for 
applying boundary conditions.  The nodeless variable 
finite element equations are, 
For fluid, 
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For solid, 
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where A is the element cross-sectional area for fluid and 
the element area in solid,

 
m&  is the mass flow rate, L is 

the element length,
 
Γ is the element boundary, t is the 

element thickness,  nx and ny are the direction cosines of 
the unit vector normal to the edge.  The nodeless variable 
finite element matrices are, 
For fluid, 
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For solid,
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The above Eqs. (10) and (11) can be written together as, 
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where [ ]cK  is the conduction matrix, [ ]vK  is the mass 

transport convection matrix, f sK −⎡ ⎤⎣ ⎦  is the convection 

matrix between fluid and solid, { }QQ
 
is the internal heat 

generate load vector, { }fT
 
and { }sT  are the vectors of 

the nodal temperatures in the fluid and solid, respectively. 
 
2.3 Adaptive Meshing 

The basic idea of the adaptive meshing technique is 
to construct a completely new mesh based on the solution 
obtained from the previous mesh.  The technique consists 
of two main steps; the first step is the determination of 
proper element sizes and the second step is the new mesh 
generation.  The temperature, T, is used herein as the 
indicator for computing proper element sizes at different 
locations in the domain.  As small elements must be 
placed in the region where changes in the temperature 
gradients are high, the second derivatives of the 
temperature at a point with respect to the global 
coordinates X and Y are needed.  Using principal stresses 
determination from a given state of stresses at a point, the 
maximum principal quantities are then used to compute 
the proper element size hi by requiring that the error 

(6) 
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should be uniform for all elements, 
2
i ih λ = 2

min maxh λ = constant  (13) 

where the subscript i denotes the direction of the 
maximum and minimum element length, and λi is the 
higher principal quantity of the element considered, 
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In Eq. (13), λmax is the maximum principal quantity for all 
elements and hmin is the minimum element size specified 
by users.  The node spacing, hi, is scaled according to the 
maximum value of the second derivatives of the 
temperature.  Such technique generates small elements in 
the regions with large change in the temperature gradients 
to increase the analysis solution accuracy.  At the same 
time, larger elements are generated in the other regions 
where the temperature profile is nearly uniform to reduce 
the computational time and the computer memory. 
 
3. Results 

In this section two example problems are presented.  
The first example, a convectively-cooled solid subjected 
to uniform heating, is chosen to evaluate the nodeless 
variable finite element formulation and to validate the 
developed computer programs.  The second example, a 
plate with intense heating, is used to evaluate the 
performance of the adaptive nodeless variable finite 
element method.  The conjugate gradient method is used 
to solve the set of algebraic equations of these problems. 
 
3.1 Convectively-cooled solid subjected to uniform 
heating 

The first example for evaluating the efficiency of the 
nodeless variable finite element formulation is the 
problem of a convectively-cooled as shown in Fig. 1.  
The solid is subjected to uniform heating q along the 
upper wall.  Heat is conducted in the solid and convection 
is occurred to the fluid that flows along the lower wall.  
All other walls of the solid are assumed to be adiabatic. 

 
Figure 1.  Problem statement of convectively-cooled solid 
subjected to uniform heating. 

 
The parameters used in this example are as follows: 

the geometry sizes H = 0.1 m, L = 2 m, the uniform 
heating q = 8,000 W/m2, the thermal conductivity ks = 
1,000 W/m-K, the flow channel parameters are Pe = 200 
(Re = 286) and Pe = 400 (Re = 572) with Pr = 0.7.  The  

convection coefficient, h is determined using the 
procedure presented in [10].  The finite element model 
consisting of 650 elements and 408 nodes, as shown in 
Fig. 2, is used in this study.  

 

 

Figure 2.  Nodeless variable finite element model 
consisting of 650 elements and 408 nodes.  
 

Figure 3 shows the predicted temperature 
distributions along the upper wall, the lower wall and in 
the channel.  The predicted temperature distributions in 
solid are shown in Fig. 4.  Figure 5 shows the predicted 
temperature distributions at x = L, Pe = 200 for different 
conductivity ratios of K = ks/kf.  The presented scheme is 
compared with the Navier-Stokes solution from Malatip 
et al. [5].  The figure shows good agreement of both the 
solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      (a) Pe = 200 

 
 
 
 
 
 
 
 
 
 
 
 
 

    (b) Pe = 400 

Figure 3.  Comparative temperature distributions from the 
Navier-Stokes and nodeless variable finite element 
methods along the two walls and in the channel at         
(a) Pe = 200 and (b) Pe = 400. 
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(a) Pe = 200 

 
 

 
(b) Pe = 400 

 
Figure 4.  Predicted temperature contours from the 
nodeless variable finite element method at (a) Pe = 200 
and (b) Pe = 400. 

               
 

  
 
Figure 5.  Comparative temperature distributions from the 
Navier-Stokes and nodeless variable finite element 
methods at x = L and Pe = 200. 
 
3.2 Plate with intense heating 

To further evaluate the performance of the nodeless 
variable finite element method incorporated by the 
adaptive meshing technique, a plate subjected to intense 
heating is considered.  The heating is simulated as a 
square width and the problem is considered into two 
cases.  In the first case, the temperatures along the left, 
the right and the lower edges are constrained to zero.  In 
the second case, convection heat transfer occurs from the 
lower edge of the plate to the fluid flow, while the left 
and the right edges are insulated. 
 

 
 
 
 
 
 
 
 

Figure 6.  Problem statement of a plate subjected to 
intense heating. 
 

In the first case as shown in Fig. 6, the exact plate 
temperature response can be calculated from [11], 
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where the origin of the ξ - y coordinate system is shown 
in Fig. 6, q is the heat source, H is the plate width, k is the 
plate thermal conductivity.  The parameter α and λn in 
Eq. (15) are defined by 

2
n w

L
πα =  (16) 

2 2

24n
n

L
πλ =  (17) 

where L is the plate length, and w is the width of heat 
source. 

Figure 7 shows a structured finite element mesh 
model consisting of 5600 elements and 3208 nodes, and 
an adaptive mesh model that consists of 742 elements and 
446 nodes.  Table 1 compares the predicted peak 
temperatures obtained from the two finite element meshes 
using the convectional and nodeless variable finite 
element methods.  The values in the brackets denote the 
percentage errors of the peak temperatures as compared 
to the exact solution.  Table 1 shows that the adaptive 
mesh uses fewer elements than the structured mesh but 
provides higher solution accuracy. 

 

       
 

      
Figure 7.  Structured and adaptive mesh models. 
 

Figure 8 shows the adaptive mesh and the predicted 
temperature solution contours.  Details of the adaptive 
mesh near the intense heating location and the 
temperature contours are shown in the lower figures.  
These figures show that small clustered elements are 
generated in the region of steep temperature gradients to 
capture the peak temperature and localized temperature 
distribution.  At the same time, larger elements are 
generated in the other regions to reduce the 
computational time and the computer memory.  The 
comparison of the exact and the predicted temperature 
distributions along the top edge is shown in Fig. 9.  The 
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figure shows that the temperature distribution obtained 
from the adaptive nodeless variable finite element method 
is in good agreement with the exact solution. 

 
 

 
 

 
 
              
 

Figure 8.  Adaptive mesh and the predicted temperature 
contours. 
 
 
 

               
 
 
 
Figure 9.  Comparison of the exact temperature and the 
predicted temperatures from the conventional method on 
structured mesh and the adaptive nodeless variable finite 
element methods.  

 
 
 
 
 
 
 
 
 
Figure 10.  Problem statement of a convectively-cooled 
plate subjected to intense heating. 
 

For the second case as shown by the problem 
statement in Fig. 10, a fully developed fluid flows 
beneath the lower edge of the plate while the other edges 
are insulated.  The parameters of fluid used in the 
computation are as follows: the thermal conductivity kf = 
0.32 W/m-K, the specific heat cf = 1,200 W/m-K, the 
density ρ = 54 kg/m3, the mass flow rate m&  = 0.054 kg/s, 
the convection coefficient h = 929.52 W/m2-k. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 11.  Adaptive mesh and the predicted temperature 
response for a convectively-cooled plate subjected to 
intense heating. 
 

Figure 11 shows the adaptive mesh that consists of 
1096 elements with 667 nodes and the predicted 
temperature contours.  Details of the adaptive mesh near 
the intense heating location and the temperature contours 
are shown in the lower figures.  At the heating location, 
the predicted peak temperatures are 218.30 oC and 217.91 
oC from the nodeless variable and the conventional finite 
element methods.  Figure 12 shows the temperature 
distributions along the top edge, the lower edge and in the 
channel obtained from the adaptive nodeless variable 
finite element method.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 12.  Predicted temperature distributions from the 
adaptive nodeless variable finite element method. 

 

Table 1.  Comparison of the predicted peak temperatures 
obtained from the conventional and the nodeless variable 
finite element methods on both the structured and 
adaptive meshes.  

Mesh Temperature (%Error) 
Convectional FE Nodeless FE 

Structured 117.094 (2.169) 119.773 (0.070) 
Adaptive 119.061 (0.526) 119.688 (0.002) 
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4. Conclusions  
The adaptive nodeless variable finite element method 

for analysis of convectively-cooled solids was presented.  
The nodeless variable finite element is employed to 
improve the predicted solution without requiring actual 
nodes.  The adaptive meshing technique was incorporated 
to reduce both the computer memory and computational 
time.  Examples demonstrated that the adaptive nodeless 
variable finite element method can provide higher 
solution accuracy as compared to the conventional finite 
element technique. 
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