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Abstract 
       The stress distribution around the vertex point of 
dissimilar materials in three-dimensional joints under 
thermal loading are investigated using BEM based on 
Rongved’s fundamental solutions.  Stress distributions 
for the material combination in the singularity region on 
the Dundurs composite plane are investigated.  The 
influences of thermal expansion coefficients and loading 
conditions on the stress distribution are examined.  It can 
be found that the stress distributions around the vertex 
point were different from those at the apex in two-
dimensional bonded joints.  
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1. Introduction 
 Stress singularities at the interface in the bonded 
joints of dissimilar materials are induced by mechanical 
loading or thermal loading.  Thermal stresses are caused 
by differences in elastic properties and thermal expansion 
coefficients in dissimilar materials joints.  The stress 
singularities generally exist at the vertex in three-
dimensional joints of dissimilar materials.  Li et al. 
(1992) reported the results of stress analysis for dissimilar 
materials using three-dimensional BEM based on 
Kelvin’s fundamental solutions.  In the analysis, the 
interface must be divided using finer meshes along the 
stress singularity lines, and huge memory and time 
consuming procedures are required for accurate analysis.  
Then, Koguchi (1997) investigated the stress singularity 
in three-dimensional bonded joints using three-
dimensional BEM based on Rongved’s fundamental 
solutions.  Rongved's fundamental solutions (1955) 
satisfy boundary conditions at the interface.  Therefore, 
the number of nodes and elements necessary for accurate 
analysis decreases, because the BEM based on Rongved’s 
fundamental solutions does not require the interface area 
of dissimilar materials joints to be divided into elements.  
Koguchi et al. (2003) also used the fundamental solution 
for two-phase transversely isotropic materials to 
investigate the stress singularity fields in three-
dimensional bonded joints using three-dimensional BEM.  

Furthermore, Prukvilailert and Koguchi (2005) reported 
on stress singularity analysis around a point on the stress 
singularity line in three-dimensional bonded joints using 
three-dimensional BEM based on Rongved’s 
fundamental solutions.  However, this previous research 
focused only on the stress singularity distributions in 
three-dimensional bonded joints under mechanical 
loading.  The distributions of the stress fields around the 
vertex in three-dimensional joints of dissimilar materials 
under thermal loading have not been made clear so far. 
       In recent years, there has been much research on 
thermal stresses at the interface in two-dimensional 
bonded joints.  Munz and Yang (1992, 1994 and 1995) 
investigated the stress singularities and stress intensity 
factors near the free edge of a junction between dissimilar 
materials subjected to mechanical or thermal loading 
using the eigenfunction expansion method.  It is well-
known that three-dimensional BEM is useful to 
efficiently analyze the stress fields in three-dimensional 
joints, since only surfaces are divided into meshes for 
analysis.  Cruse et al. (1977) and Rizzo and Shippy 
(1977) determined the boundary integral equation for 
three-dimensional thermoelasticity.  The thermoelastic 
integral equation was also derived using the body force 
analogy (Karami and Kuhn, 1992; Cheng et al., 2001). 
       In this paper, we investigate the stress singularity 
fields around the vertex point in three-dimensional joints 
of dissimilar materials under thermal loading using BEM 
based on Rongved’s fundamental solutions.  The material 
combinations are mapped on the DD 22 βα −  Dundurs' 
composite plane (Dundurs, 1969) for the order of stress 
singularity in a form of power-law singularity, aλ , in 
plane strain condition as shown in Fig. 1.  These 
parameters are defined as 
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Figure 1. Dundurs’ composite plane 
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in which ( )hG  is the shear modulus and ( )hv  is the 

Poisson’s ratio.  The subscript h  of these material 
properties represents the material region; subscript 1 
refers to the region of material 1 and subscript 2 refers to 
the region of material 2. 
 
2. BEM for thermoelasticity 
 The stress and displacement fields at a point in the 
joints with high stress are examined using BEM, which 
requires less memory than the FEM, especially in the 
case of three-dimensional joints.  Here, Rongved’s 
fundamental solutions satisfying the boundary conditions 
at the interface in dissimilar materials are applied in our 
analysis.  For thermoelasticity with a uniform 
temperature variation in dissimilar materials, the 
boundary integral equation is derived as follows: 
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where S is the surface of the dissimilar materials model 
excluding the interface area, P and Q are points on the 
boundary, ijC  is the C-matrix derived from the 
configuration around a boundary point P, and ijU and ijT  
are Rongved’s fundamental solutions for displacements 
and surface tractions, respectively.  Parameter ϕ  is a 
uniform temperature variation from the stress-free state.  
The term M  varies according to the location of an 
element.  We can define M  as 
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where 1Tα  and 2Tα  are the thermal expansion 
coefficients for material 1 and for material 2, 
respectively. 
       A very fine mesh division is used to obtain an 
accurate stress distribution.  Then, the stress state at 
internal points can be derived.  First, the strain-
displacement relation is written as 
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The stress-strain relation for thermoelasticity is given by 
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Then, substitution of Eq. (6) into Eq.(7) gives 
( )

( ) ( ), , ,
h

ij i j j i ij k k ijhG u u N u Mσ δ δ ϕ= + + −                         (9) 

Finally, the stress ijσ  at the internal point, ξ , can be 
obtained by differentiating Eq. (4) and substituting into 
Eq. (9) as follows: 
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where the third-order tensor components ( ) ( ),h
ijlD Qξ  and 

( ) ( ),h
ijlV Qξ  are obtained by substituting Rongved’s 

fundamental solutions ( )QUij ,ξ  and ( )QTij ,ξ , 
respectively, in the stress-displacement equations as 
follows: 
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where   ijδ is the Kronecker delta. 

       
 

Figure 2. A three-dimensional joint of dissimilar 
materials with the origin at the vertex point 
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Figure 3. Model for analysis of a three-dimensional joint 

 
       A typical model employed in our calculation is 
shown in Fig. 3.  The total number of nodes and elements 
are 3067 and 1370, respectively.  A very fine mesh 
division is located around the vertex point. For the 
boundary conditions, the displacements in the x-direction 
and the y-direction are free at all surfaces of the model.  
The displacement in the z-direction at the upper surface 
and side surfaces of the model is free, whereas that at the 
lower surface is fixed to zero. 
 
3. Results and Discussion 
 In this section, thermal loading due to a uniform 
temperature variation (ϕ = ΔT: constant) is applied to the 
three-dimensional joint model. The material 
combinations of the joint are chosen so as to locate in the 
singularity region on the Dundurs’ composite plane.  
Material properties are first chosen as 

( )1E  = 206GPa, 

( )1v =0.3, ( )2E =52.6742GPa, ( )2v =0.26316. The 

corresponding Dundurs' parameters ( 2 0.6Dα = , 2 0.2Dβ = )  
are in the singularity region.  The thermal expansion 
coefficient of material 1, 1Tα , is 1.0×10-6 K-1 and of 

material 2, 2Tα , is 5.0×10-6 K-1.  A uniform temperature 
variation, TΔ , is 100K− , which means that the 
temperature in the joint decreases from the stress-free 
state ( TΔ  is negative, indicating a cooling-down 
condition).  The upper part of the model (material 2) 
allows more contraction than the lower part of the model 
(material 1, which has a lower value of the thermal 
expansion coefficient). 
       The stress distribution of θθσ  at the interface 

( 0θ = o ) around the vertex point along the dimensionless 
distance /r L  in the present BEM analysis for a uniform 
temperature variation ( )100T KΔ = −  is shown in Fig. 4.  
For comparison, we also provide the stress distributions 
of θθσ  in two-dimensional bonded joints computed using 
the formulation developed by Munz and Yang (1992) in 

plane strain condition.  It can be seen that the stress 
distribution of θθσ  for three-dimensional bonded joints is 
similar to that for two-dimensional bonded joints, but the 
magnitude is larger. The stress distribution of zzσ in the 
upper interface (z/L = 0.00005) and in the lower interface 
(z/L = -0.00005) along ro/L are shown in Fig. 5.  In the 
upper interface, Material 2, there is Young’s modulus less 
than those of Material 1, and it is noticed that the stress 
distribution of θθσ  is maximum inside the region not at 
the interface.  Next, the stress distributions of θθσ  for 
various uniform temperature variations and various 
values of 2Tα  when 1Tα  is fixed to 6 11.0 10 K− −×  are 
investigated and shown in Fig. 6.  The magnitude of the 
stress θθσ  is proportional to the value of a uniform 
temperature variation according to the Linear Theory of 
Elasticity, and the magnitude also increases as the value 
of 2Tα  increases. 
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Figure 4. Stress distributions of θθσ  at the interface 
around the vertex point for a uniform temperature 

variation ( KT 100−=Δ ). 
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Figure 5. Stress distributions of σzz 

for z/L (= 0.00005, 0.0, -0.00005) along ro/L 

ro/L 
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Fig. 6. Stress distributions of θθσ  at the interface for 
various uniform temperature variations and thermal 

expansion coefficient in a semi-log scale. 
 
6. Conclusion 
 In the present paper, we created a three-dimensional 
BEM program for thermoelasticity based on Rongved’s 
fundamental solution satisfying the boundary condition at 
the interface.  As a result, accurate analysis using the 
present BEM program required less memory and was less 
time consuming than BEM analysis based on Kelvin’s 
fundamental solutions or FEM analysis.  The 
distributions of stress singularity fields around the vertex 
point for dissimilar materials in three-dimensional 
bonded joints under thermal loading were presented and 
compared with the results in the previous research 
studies.  For a uniform temperature variation applied to 
three-dimensional bonded joints, the magnitude of stress 
distributions were proportional to the temperature 
variation, TΔ , and depended on the difference in the 
thermal expansion coefficients.   
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